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The ability to recognize one’s uncertainty is critical for learn-
ing. When uncertain, we gather disambiguating information 
from knowledgeable sources1,2, seek information to fill gaps in 

understanding3,4 or opt out of responding to avoid mistakes5,6. The 
examination of the ability to experience uncertainty can illuminate 
the mechanisms that underlie metacognition (for example, moni-
toring ongoing mental processes7), including insight into function 
and boundary conditions8. However, little is known about the emer-
gence of this ability.

Recent innovative studies9–11 have suggested that infants exhibit 
behaviours that may track their states of knowledge or ignorance. 
In one study, infants aged 20 months solicited parents’ help more 
frequently when they had not seen or didn’t remember the loca-
tion of a toy12. In another study, 18-month-old infants were more 
persistent in searching for a hidden object at the correct location 
after shorter delays compared with after longer delays13. Overall, 
infants and toddlers seemingly respond to uncertain situations with 
hesitation or information seeking behaviours. However, these stud-
ies have not examined how the available evidence is assessed before 
rendering an overt decision (for example, pointing or turning to a 
parent). This assessment arguably provides the informational basis 
for decisions such as asking for help in infants and toddlers. Failure 
to account for this assessment represents a substantial gap given that 
evidence accumulation is central to theories of adult metacognition 
and decision-making14.

It has been proposed that implicit error signals support bids for 
help in infants and overt uncertainty judgements in children and 
adults8,15. Our guiding hypothesis is that these signals manifest in 
toddlers’ behaviours during the time between stimulus onset and 
response selection. Specifically, we argue that response latencies16, 
as well as looking times and gaze switches, may provide valu-
able insights. These behaviours have been examined primarily in  
metacognitive research in older children and adults17,18 whose inac-
curate responses in self-paced cognitive tasks are typically executed 
more slowly, and are associated with lower confidence1,19,20 (results 

using speeded tasks can be found in refs. 21,22). These data suggest 
that response latencies may reflect processes of evidence accumu-
lation and decision making16. However, response latencies may  
also capture the operation of additional processes, such as stimu-
lus processing or response execution16, making it imperative to use 
methods that differentiate among them. Decision models, specifi-
cally drift–diffusion models, have been developed precisely to iso-
late the processes that contribute to response latencies in adults16,23. 
These models estimate three parameters from response latencies, 
including drift rate, boundary-separation and non-decision vari-
ables. The drift rate parameter captures the speed of evidence accu-
mulation. For example, difficult perceptual tasks should result in 
a lower drift rate, indicating a lower quality of information and 
slower evidence accumulation. The boundary-separation param-
eter reflects the criterial amount of evidence needed to respond. 
For example, more difficult perceptual tasks may result in lower 
boundary separation (or distance between accurate and inaccurate 
responses) because individuals might recognize that a response 
must be eventually submitted, even when evidence is not optimal. 
The non-decision parameter captures variability in processes that 
are not related to decisions, such as the time it takes individuals 
to encode the stimuli or execute a response. Overall, these mod-
els formally specify that response latencies reflect decision and 
non-decision processes.

Drift–diffusion models have been used extensively in adults, 
but only rarely in developmental research and exclusively in older 
children24–26. For example, Ratcliff et al.26 had third graders and 
young adults determine whether presented stimuli were or were not 
real words. In the easy condition, non-words were random letter 
strings, whereas, in the hard condition, they were pronounceable 
non-words. Both children and adults were less accurate in the hard 
condition compared with the easy condition. The non-decision 
parameter was greater in children compared with adults, indicating 
that age differences in response times may depend on processes that 
are not related to the assessment of available evidence. Critically, in 
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both children and adults, lower drift rate and boundary-separation 
parameters were observed in the hard condition compared with 
the easy condition. Thus, when faced with more difficult trials that 
might generate more uncertainty, both children and adults accu-
mulated evidence more slowly, but also demanded less evidence to 
endorse a response option. We investigated whether toddlers may 
also accumulate evidence more slowly, but require less evidence, 
when faced with more difficult decisions.

Other behaviours, such as looking behaviours, can provide addi-
tional insights into toddlers’ evidence accumulation and decision 
processes. For example, toddlers may visually inspect response 
options more closely when decisions are more difficult and more 
evidence is necessary, wavering between response options. Looking 
behaviours, including gaze switches between response options, 
have been associated with uncertainty monitoring in older children 
and adults18,27. In a recent study examining event-related poten-
tials, Goupil and Kouider13 found that a component resembling the 
error-related negativity (ERN) marking error monitoring in adults28 
is stronger when 12-month-old infants directed their first look after 
test stimulus onset to the distracter instead of the target stimu-
lus. The necessary absence of a response selection (for example, 
pointing) given the age of the infants prevents us from establish-
ing conclusively whether this initial eye gaze maps onto a response 
selection, because the initial attentional capture towards a stimulus 
may reflect a variety of additional factors (such as responses to stim-
ulus complexity, ambiguity and novelty29). Our research examines 
how looking times and gaze switches map onto toddlers’ response 
selection following the experimenter’s instruction.

Here we conducted two identical experiments, of which experi-
ment 2 was a preregistered replication (https://osf.io/nvf2j/), to 
examine how toddlers gather evidence when faced with situations 
that might generate uncertainty. We manipulated decision diffi-
culty by asking toddlers to identify a target between two partially 
occluded images that were either similar (for example, an elephant 
and a bear) or dissimilar (for example, a cow and broccoli). Similar 
trials were expected to yield lower accuracy rates compared with 
dissimilar trials. Parallel versions of the tasks that included different 
exemplars of the same stimuli were used in a touchscreen task (to 
collect response latencies) and in an eye-tracker task (to collect eye 
movement data).

We expected longer average response latencies for inaccurate tri-
als. Critically, using drift–diffusion models, we expected a slower 
drift rate for similar trials compared with dissimilar trials. We are 
aware that model fitting is typically pursued with numerous trials30, 
which is difficult to achieve with toddlers. To mitigate this prob-
lem, we first fit the models at the group level, ensuring a large num-
ber of trials, and verified that we observed better model fit for the 
drift–diffusion model compared with a baseline model. We used 
parameter estimates at the individual level to verify that similar pat-
terns of results were found and to conduct exploratory individual 
differences analyses. Specifically, we investigated whether evidence 
accumulation was associated with task-independent indices of tod-
dlers’ ability to report uncertainty. Toddlers begin to state ‘I don’t 
know’ to express their ignorance between 2 and 2.5 years of age31. 
If parameters of evidence accumulation and decision processes 
capture aspects of an implicit ability to respond to states of knowl-
edge or uncertainty, then toddlers who demonstrate more efficient 
evidence-accumulation abilities and demand more evidence may be 
more likely to have linked these signals to their experience and ver-
bal expression of uncertainty.

Finally, we examined toddlers’ looking times and gaze switches 
between response options. We expected toddlers to take longer to 
show a preference for their eventual choice and switch gaze between 
response options more frequently for more difficult trials, consis-
tent with toddlers gathering more disambiguating information 
under conditions of greater uncertainty.

Results of experiment 1
Accuracy. The accuracy scores of the toddlers ranged from 0.56 to 
1.00 (mean ± s.d., 0.84 ± 0.10) for the eye-tracker task and 0.53 to 
1.00 (0.79 ± 0.13) for the touchscreen task (data and analytical code 
are provided at https://osf.io/t8p4g/). To verify that yoked items 
produced similar performance, we fit a logistic regression with trial 
accuracy (0 or 1) on the eye-tracker task as the dependent mea-
sure and trial accuracy on the touchscreen task as a fixed effect; 
trial and participant were entered as random effects. Accuracy on 
a given trial of the touchscreen task significantly predicted accu-
racy on the yoked trial of the eye-tracker task conducted one 
week apart (β = 0.40, P = 0.03, d = 0.13, 95% confidence interval 
(CI) = 0.02–0.77).

We found higher accuracy rates for dissimilar trials compared 
with similar trials in both tasks (eye-tracker: dissimilar, 0.88 ± 0.11, 
similar, 0.79 ± 0.16, t72 = 4.43, P < 0.001; d = 0.52, 95% CI = 0.05–0.14;  
touchscreen: dissimilar, 0.86 ± 0.14, similar, 0.71 ± 0.17, t70 = 8.47, 
P < 0.001; d = 1.01, 95% CI = 0.11–0.18). Thus, similar items were 
more difficult than dissimilar items across tasks.

Response latencies and drift–diffusion parameters. For the next 
set of analyses, we compared similar–accurate, dissimilar–accu-
rate and inaccurate trials. Unless otherwise noted, inaccurate trials 
were collapsed across similar and dissimilar trials to have sufficient 
observations. This comparison enabled us to consider the effects of 
both accuracy and similarity. Post hoc analyses using both paired 
t-tests and multilevel models confirmed that there were no differ-
ences between dissimilar–inaccurate and similar–inaccurate trials 
(Extended Data Fig. 3, Supplementary Results 1).

Response latencies. We conducted a one-way (dissimilar–accurate  
versus similar–accurate versus inaccurate) repeated-measures 
analysis of variance (ANOVA) with average response latency as the 
dependent measure (an alternative multilevel model is provided 
in Supplementary Table 1a). We found a main effect of trial type 
(F2,136 = 6.46, P = 0.002, ηp

2 = 0.09, 95% CI = 0.01–0.18) such that 
response latencies were shorter for similar–accurate and dissimi-
lar–accurate compared with inaccurate trials (t68 = −3.28, P = 0.002, 
d = −0.39, 95% CI = −1,152.95 to −280.66; and t68 = −2.62, P = 0.01, 
d = −0.32, 95% CI = −1,080.38 to −146.37, respectively). There 
was no statistically significant difference between similar–accurate 
and dissimilar–accurate trials (t68 = −0.54, P = 0.59, d = −0.06, 95% 
CI = −486.61–279.75; Fig. 1a). This suggests that overall response 
latencies are sensitive to trial accuracy. We found no statistically 
significant evidence that age in months was correlated with the dif-
ferences between trial types (similar–accurate minus inaccurate: 
r = 0.07, P = 0.54, 95% CI = −0.17–0.30; dissimilar–accurate minus 
inaccurate: r = 0.09, P = 0.44, 95% CI = −0.15–0.32; dissimilar–accu-
rate minus similar–accurate: r = 0.03, P = 0.80, 95% CI = −0.21–0.26).

Drift–diffusion parameters. Using all trials across the entire sample, 
we found that both drift rate (v) and separation (a) parameters 
seemed to be higher for dissimilar (v = 0.51, a = 4.00) compared 
with similar trials (v = 0.28, a = 3.77). The non-decision param-
eter did not seem to differentiate greatly between the two types 
of trials (dissimilar t0 = 0.62; similar t0 = 0.58). Compared with a 
baseline model in which similar and dissimilar trials were not dif-
ferentiated, the main model provided a significantly better fit to the 
data (main model, Akaike information criterion (AIC) = 6,336.14, 
Bayesian information criterion (BIC) = 6,356.89; baseline model, 
AIC = 6,385.98, BIC = 6,406.73; χ2

3 = 49.84, P < 0.001). Quantile 
probability plots also suggested an acceptable fit of the main 
model (Extended Data Fig. 1a). In the individual-level models, 
the dissimilar condition yielded significantly greater estimates 
than the similar condition in both drift rate (t67 = 7.57, P < 0.001, 
d = 0.92, 95% CI = 0.31–0.53) and separation parameters (t67 = 3.91, 
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P < 0.001, d = 0.47, 95% CI = 0.57–1.75; Fig. 1b). Thus, the patterns 
of results for these parameters are similar to those obtained with the 
sample-level model (Supplementary Table 2a). The non-decision 
parameter was greater in the similar than the dissimilar condi-
tion (t70 = −2.14, P = 0.04, d = −0.25, 95% CI = −0.41 to −0.01). 
Supplementary analyses fitting a hierarchical drift–diffusion model 
(HDDM)32 provided converging results (Supplementary Results 2).

We then used an individual difference approach and conducted 
a multiple regression analysis in which drift rate and separation 
parameters were entered simultaneously to predict the frequency 
that the toddlers use the ‘I don’t know’ expression. The age and 
overall vocabulary of the toddlers were also included in the multiple 
regression. The model was significant (R2 = 0.24, 95% CI = 0.08–0.40,  
F4,63 = 5.08, P = 0.001, η2 = 0.24, 95% CI = 0.05–0.40) and both over-
all vocabulary (β = 0.32, P = 0.01, d = 0.35, 95% CI = 0.09–0.54) 
and the drift rate parameter (β = 0.33, P = 0.004, d = 0.36, 95% 
CI = 0.11–0.56) significantly predicted ‘I don’t know’ use on the 
basis of the parental report. We found no statistically significant 
evidence that the separation parameter (β = 0.02, P = 0.86, d = 0.02, 
95% CI = −0.20–0.24) and age (β = 0.06, P = 0.58, d = 0.07, 95% 
CI = −0.17–0.29) predicted ‘I don’t know’ responses.

Eye movements. Trajectory of the proportion of looking time to 
selected responses. To investigate the differences in the trajectory of 
proportion of looking time towards the selected item as a function 
of trial type, we conducted a multilevel model, with fixed effects 
of trial type (dissimilar–accurate, similar–accurate and inaccurate) 
and time bin (0–1 s, 1–2 s and 2–3 s) and a random effect of indi-
vidual. To estimate the significance of our model, we used a χ2 dif-
ference test, testing its difference from a baseline model (intercept 
only). We found a main effect of trial type (b = −0.08, t2,991 = −2.28, 
P = 0.02, d = −0.04, 95% CI = −0.16 to −0.01), which was qualified 
by a trial type by time bin interaction (Fig. 2a; Extended Data Fig. 
4a), indicating different patterns of preferential looking as a func-
tion of time. Our model was significantly different compared with 
the baseline model (χ2

8 = 64.45, P < 0.001). In time bin 1 (0–1 s), we 
found that there were no statistically significant differences among 
trial types (similar–accurate compared to inaccurate: b = −0.09, 
P = 0.04, Bonferroni-corrected P (PBonf) = 0.12, d = −0.06, 95% 
CI = −0.17–0.00; dissimilar–accurate compared to inaccurate: 

b = −0.04, P = 0.39, PBonf = 1.00, d = −0.03, 95% CI = −0.12–0.05; 
similar–accurate compared to dissimilar–accurate: b = 0.05, P = 0.12,  
PBonf = 0.35, d = 0.05, 95% CI = −0.01–0.11). In time bin 2 (1–2 s), 
we found that the proportion of looking times for dissimilar–accu-
rate trials was significantly greater than those for inaccurate trials 
(b = 0.13, P < 0.001, PBonf < 0.001, d = 0.12, 95% CI = 0.06–0.19). 
Finally, in time bin 3 (2–3 s), we found that the proportion of look-
ing times for both dissimilar–accurate trials and similar–accu-
rate trials was significantly greater than those for inaccurate trials 
(b = 0.17, P < 0.001, PBonf < 0.001, d = 0.14, 95% CI = 0.09–0.25; and 
b = 0.11, P = 0.01, PBonf = 0.02, d = 0.09, 95% CI = 0.03–0.18, respec-
tively). Overall, although toddlers ended up eventually showing a 
preference for the image that they chose (Extended Data Fig. 2), 
they showed this preference earliest in the trial for dissimilar–accu-
rate decisions compared with inaccurate decisions.

Gaze switches. The preferential looking results suggested that dissim-
ilar items required less deliberation. Our hypothesis is that toddlers 
explore options more in trials that require more evidence to make a 
decision. To directly test this hypothesis, we examined gaze switches 
between stimuli. We conducted a one-way (dissimilar–accurate ver-
sus similar–accurate versus inaccurate) repeated-measures ANOVA 
with the mean number of gaze switches as the dependent measure. 
We found a main effect of trial type (F2,126 = 3.90, P = 0.02, ηp

2 = 0.06, 
95% CI = 0.0004–0.14) with fewer gaze switches for dissimilar–
accurate compared with similar–accurate (t63 = −4.15, P < 0.001, 
d = −0.84, 95% CI = 0.18–0.51). There was no significant differ-
ence between similar–accurate and inaccurate (t63 = 0.41, P = 0.68, 
d = 0.09, 95% CI = −0.24–0.37) or between dissimilar–accurate  
and inaccurate (t63 = −1.95, P = 0.06, d = 0.25, 95% CI = −0.56–0.01;  
Fig. 2b; a post hoc complementary analyses of within-image 
gaze transitions is provided in Supplementary Results 3 and 
Supplementary Figs. 1 and 2a).

Results of experiment 2
Experiment 2 was a preregistered replication study. The effects of 
similarity on looking times, drift–diffusion parameters, and the 
association between drift parameters and mental state language 
were preregistered for this study. We predicted that the results of 
this experiment would replicate those observed in experiment 1.
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Fig. 1 | Response latencies and parameter estimates for the touchscreen task of experiment 1. a, Mean response latencies for the dissimilar–accurate, 
similar–accurate and inaccurate trials; n = 71 toddlers (dissimilar–accurate versus inaccurate trials: t68 = −2.62, P = 0.01, d = −0.32, 95% CI = −1,080.38 to 
−146.37; similar–accurate versus inaccurate trials: t68 = −3.28, P = 0.002, d = −0.39, 95% CI = −1,152.95 to −280.66; dissimilar–accurate versus similar–
accurate trials: t68 = −0.54, P = 0.59, d = −0.06, 95% CI = −486.61–279.75). The y axis is broken between 10,000 and 12,000 ms. b, Mean drift–diffusion 
parameter estimates for the similar and dissimilar trials for the drift, separation and non-decision parameters; n = 71 toddlers (dissimilar versus similar 
trials for the drift parameter: t67 = 7.57, P < 0.001, d = 0.92, 95% CI = 0.31–0.53; dissimilar versus similar for the separation parameter: t67 = 3.91, P < 0.001, 
d = 0.47, 95% CI = 0.57–1.75; dissimilar versus similar for the non-decision parameter: t70 = −2.14, P = 0.04, d = −0.25, 95% CI = −0.41 to −0.01). The points  
represent individual data points. Data are jittered on the x axis to avoid stacking. The error bars show the 95% confidence intervals.
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Accuracy. Accuracy scores ranged from 0.53 to 1.00 (0.82 ± 0.12) 
for the eye-tracker task and 0.53 to 1.00 (0.76 ± 0.12) for the touch-
screen task. As in experiment 1, accuracy on a given trial of the 
touchscreen task significantly predicted accuracy on the yoked 
trial of the eye-tracker task (β = 0.87, P < 0.001, d = 0.31, 95% 
CI = 0.54–1.33).

As in experiment 1, in the touchscreen task, we found higher 
accuracy rates for dissimilar items (0.82 ± 0.15) compared with sim-
ilar items (0.71 ± 0.15) (t66 = 5.43, P < 0.001; d = 0.66, 95% CI = 0.07–
0.15). In the eye-tracker task, we also found higher accuracy rates 
for dissimilar items (0.84 ± 0.16) compared with similar items 
(0.80 ± 0.15) (t60 = 2.21, P = 0.03; d = 0.28, 95% CI = 0.01–0.10).

Response latencies and drift–diffusion parameters. Response 
latencies. As in experiment 1, our repeated-measures ANOVA (an 
alternative multilevel model is shown in Supplementary Table 1b) 
showed a main effect of trial type (F2,126 = 4.90, P = 0.01, ηp

2 = 0.07, 
95% CI = 0.01–0.16) such that response latencies were faster for 
similar–accurate and dissimilar–accurate trials compared with inac-
curate trials (t63 = −2.29, P = 0.03, d = −0.29, 95% CI = −1,433.25 to 
−97.06; and t63 = −2.50, P = 0.02, d = −0.31, 95% CI = −1,934.08 to 
−213.99, respectively). No statistically significant difference was 
found between the similar–accurate and dissimilar–accurate trials 
(t63 = 1.11, P = 0.27, d = 0.14, 95% CI = −247.98–865.75; Fig. 3a).  
We found no statistically significant evidence that age in months was 
correlated with the differences between trial types (similar–accurate 
minus inaccurate: r = 0.04, P = 0.79, 95% CI = −0.21–0.28; dissimi-
lar–accurate minus inaccurate: r = −0.02, P = 0.86, 95% CI = −0.26–
0.23; dissimilar–accurate minus similar–accurate: r = −0.08, P = 0.54,  
95% CI = −0.32–0.17).

Drift–diffusion parameters. Using all trials across the entire sample, 
we found that the drift rate and separation parameters were higher 
for the dissimilar condition (v = 0.39, a = 4.20) compared with the 
similar condition (v = 0.24, a = 4.00). The non-decision parameter 
was the same for both dissimilar and similar conditions (t0 = 0.53). 
The AIC and BIC metrics and the χ2 difference test revealed that 
our main model is a significantly better fit to the data (main model: 
AIC = 6,384.17, BIC = 6,404.58; baseline model: AIC = 6,406.21, 
BIC = 6,426.62; χ2

3 = 22.04, P < 0.001). Quantile probability plots 
suggested an acceptable fit (Extended Data Fig. 1b). Similar to the 
sample-level results and as shown in experiment 1, paired samples 
t-tests on individual level parameters revealed significant differ-
ences between the drift rate (t63 = 6.07, P < 0.001, d = 0.76, 95% 
CI = 0.16–0.31) and the separation parameter (t63 = 2.27, P = 0.03, 
d = 0.28, 95% CI = 0.04–0.69) such that the parameters for the dis-
similar condition were greater than the parameter for the similar 
condition (Fig. 3b). There were no statistically significant differ-
ences between the non-decision parameters (t65 = −0.28, P = 0.78, 
d = −0.03, 95% CI = −0.29–0.22; Fig. 3b).

We found that our regression model—using the drift rate, sepa-
ration parameter and general vocabulary to predict ‘I don’t know’ 
use—was significant (R2 = 0.20, 95% CI = 0.04–0.36, F4,60 = 3.86, 
P = 0.01, η2 = 0.20, 95% CI = 0.02–0.35). In contrast to experi-
ment 1, only overall vocabulary (β = 0.46, d = 0.45, P = 0.001, 95% 
CI = 0.21–0.71) significantly predicted ‘I don’t know’ use; there 
was no statistically significant evidence that drift rate (β = −0.04, 
P = 0.72, d = −0.05, 95% CI = −0.28–0.19), separation param-
eter (β = 0.09, P = 0.47, d = 0.09, 95% CI = −0.15–0.32) and age 
(β = −0.12, P = 0.36, d = −0.11, 95% CI = −0.37–0.14) predicted ‘I 
don’t know’ responses (an alternative multiple regression model 
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versus similar–accurate trials: b = 0.06, P = 0.02, PBonf = 0.06, d = 0.07, 95% CI = 0.01–0.11; bin 3 dissimilar–accurate versus inaccurate trials: b = 0.17, 
P < 0.001, PBonf < 0.001, d = 0.14, 95% CI = 0.09–0.25; bin 3 similar–accurate versus inaccurate trials: b = 0.11, P = 0.01, PBonf = 0.02, d = 0.09, 95% 
CI = 0.03–0.18). 0 s is stimulus onset. b, The mean number of gaze switches for dissimilar–accurate, similar–accurate and inaccurate trials; n = 73 toddlers 
(dissimilar–accurate versus inaccurate trials: t63 = −1.95, P = 0.06, d = 0.25, 95% CI = −0.56–0.01; similar–accurate versus inaccurate trials: t63 = 0.41, 
P = 0.68, d = 0.09, 95% CI = −0.24–0.37; dissimilar–accurate versus similar–accurate trials: t63 = −4.15, P < 0.001, d = −0.84, 95% CI = 0.18–0.51). The y 
axis is broken between 4.5 and 6.5 gaze switches. The points represent individual data points. The average values on the proportion of look time graph and 
the data points on both graphs are jittered on the x axis to avoid stacking. The error bars show the 95% confidence intervals.
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showing an association between separation and mental state lan-
guage is shown in Supplementary Table 3).

Eye movements. Trajectory of proportion looking times to selected 
responses. As in experiment 1, our multilevel model revealed a main 
effect of trial type (b = −0.09, t2,311 = −2.27, P = 0.02, d = −0.05, 95% 
CI = −0.17 to −0.01), which was qualified by a significant trial 
type by time-bin interaction (Fig. 4a, Extended Data Fig. 4b). Our 
model was significantly different compared with the baseline model 
(χ2

8 = 17.87, P = 0.02). Follow-up analyses further confirmed the 
results from experiment 1. In time bin 1 (0–1 s), there were no sta-
tistically significant differences among trial types (similar–accurate 
compared to inaccurate: b = −0.08, P = 0.10, PBonf = 0.30, d = −0.06, 
95% CI = −0.17–0.01; dissimilar–accurate compared to inaccurate: 
b = −0.09, P = 0.05, PBonf = 0.14, d = −0.07, 95% CI = −0.18–0.00; 
similar–accurate compared to dissimilar–accurate: b = −0.01, 
P = 0.68, PBonf = 1.00, d = −0.01, 95% CI = −0.09–0.06). In time bin 
2 (1–2 s), we found that only dissimilar–accurate trials resulted in 
higher proportions of looking times compared with inaccurate tri-
als (b = 0.11, P = 0.003, PBonf = 0.01, d = 0.10, 95% CI = 0.04–0.18). 
Finally, in time bin 3 (2–3 s), we found that the proportion of look-
ing times for both dissimilar–accurate and similar–accurate trials 
was significantly higher compared with inaccurate trials (b = 0.12, 
P = 0.005, PBonf = 0.01, d = 0.10, 95% CI = 0.03–0.20; and b = 0.12, 
P = 0.006, PBonf = 0.02, d = 0.10, 95% CI = 0.04–0.20, respectively), 
but they were not statistically different from one another (b = 0.002, 
P = 0.96, PBonf = 1.00, d = 0.001, 95% CI = −0.06–0.07).

Gaze switches. As in experiment 1, our repeated-measures 
ANOVA revealed a main effect of trial type (F2,112 = 3.19, P = 0.05, 
ηp

2 = 0.05, 95% CI = 0–0.14) with more gaze switches for inac-
curate compared with dissimilar–accurate (t56 = −2.21, P = 0.03, 
d = −0.29, 95% CI = −0.82 to −0.04). However, the number of gaze 
switches for similar–accurate was intermediate and not statistically  
significantly different from inaccurate (t56 = −1.44, P = 0.15, 
d = −0.20, 95% CI = −0.74–0.12) or dissimilar–accurate (t56 = 1.28, 
P = 0.20, d = 0.19, 95% CI = −0.07–0.31; Fig. 4b; additional gaze 
switch analyses within each image are provided in Supplementary 
Figs. 1 and 2b).

A post hoc analysis showed that the spontaneous behaviours of 
the toddlers that suggested uncertainty varied as a function of trial 
type (Supplementary Results 4).

Discussion
Here we investigated whether toddlers exhibit behaviours that 
might reflect responses to states of uncertainty and information 
gathering before committing to a decision. We have proposed that 
toddlers’ overt decisions may depend on implicit error signals that 
manifest in their behaviours during the time between stimulus pre-
sentation and response selection. These signals provide cues for 
uncertainty reports in older children and adults15 and may serve 
as precursors of metacognitive abilities if young children learn to 
attend to them during cognitive tasks, or they might reflect core 
metacognitive abilities in infants and young children33. We devised 
a task that requires little instruction. By administering yoked ver-
sions of the task using an eye-tracking and a touchscreen system, we 
could characterized children’s information gathering and hesitation 
during perceptual discrimination and the corresponding decisions. 
We extend previous research that examined either infants’ sponta-
neous signals of evidence accumulation with no overt decision13,34 
or overt behavioural responses without examination of intervening 
processes12,35.

Toddlers responded more slowly during incorrect responses 
compared with during correct responses, suggesting that they were 
sensitive to decision difficulty. This finding is consistent with recent 
research showing that even 18-months-olds can distinguish the 
accuracy of their responses by searching longer for a hidden toy in 
the correct location compared with the incorrect location13. We did 
not observe any differences in response latencies between similar 
and dissimilar correct responses. Although this result might suggest  
that toddlers could only slow their responding when they generally 
failed to identify an appropriate response, results from the drift–
diffusion model provided a more nuanced picture. The drift rate 
parameter was lower in similar trials compared with dissimilar 
trials, consistent with toddlers extracting lower-quality evidence 
under conditions of reduced discriminability (and possibly higher 
uncertainty). However, we also found greater values for the separa-
tion parameter with dissimilar trials, suggesting that more evidence 
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was necessary to endorse a response on dissimilar trials; this find-
ing might indicate that, when evidence is expected to be accessible 
and clear, as is the case with dissimilar trials, responses are rendered 
after thorough examination. Thus, the contribution of these oppos-
ing processes explains why comparable average response latencies 
were observed across conditions and underscores the use of param-
eter estimates. The pattern of results for drift and separation param-
eters is strikingly consistent with results observed in adults and 
older children facing a lower or higher level of decision difficulty26. 
The separation parameter has been shown to be sensitive to other 
manipulations resulting in different levels of accuracy, consistent 
with the idea that when a higher level of evidence is expected, the 
separation parameter is higher compared with when a lower level of 
evidence is expected. For example, when accuracy is emphasized, 
the separation parameter is greater compared with when speed is 
emphasized, which results in lower overall accuracy36,37. Our task 
was self-paced and the length of overall response times did not sug-
gest that toddlers interpreted the task as emphasizing speed. Future 
research should nevertheless examine the emergence of speed–
accuracy trade-offs in early childhood.

We acknowledge that we included a much smaller number of tri-
als per participant than is recommended for drift–diffusion model-
ling30. The confirmation that the pattern of results at the individual 
level matches the pattern at the sample level suggests that the results 
were still reliable, even with fewer trials. Furthermore, the replica-
tion of our results across experiments provides some reassurance 
that the measure captured meaningful information. Finally, we also 
conducted a HDDM, which enabled us to obtain estimates from 
a small number of trials per participant. The HDDM model con-
firmed our pattern of results, revealing higher drift and separation 
parameters for the dissimilar trials.

We also explored whether drift parameters could be used as 
an individual difference measure to predict toddlers’ use of lan-
guage indicating ignorance or uncertainty31 (that is, ‘I don’t know’).  
In experiment 1, we found that drift rate positively predicted fre-
quency of ‘I don’t know’. This result suggests that toddlers who are 
more efficient at extracting evidence also show a greater ability to 
express their states of ignorance, linking implicit behavioural sig-
nals with overt expressions of uncertainty. However, this result was 
not replicated in experiment 2 (an alternative model is shown in 
Supplementary Table 3 that suggests instead an association with the 
separation boundary parameter). It is also possible that, contrary to 
our initial hypothesis, the separation parameter capturing the evi-
dence necessary to commit to a decision may be more meaningfully 
associated with behaviours that signal uncertainty than the drift 
parameter. Our post hoc examination of the association between 
drift–diffusion parameters and the language of general mental 
states—above and beyond general vocabulary—in experiment 2, as 
well as our exploration of the association between drift–diffusion 
parameters and the spontaneous uncertainty behaviours performed 
during the session, are suggestive of this alternative possibility. 
Future research should examine this further.

Future research should also use multiple sessions to increase the 
number of trials and test whether this provides a stronger basis for 
assessment of associations with other variables including the use of 
‘I don’t know’ in toddlers. It is nevertheless possible that the relation 
between the two constructs is tenuous at this age, or it encompasses 
decision processes more generally (instead of evidence accumu-
lation specifically) regardless of the reliability of the estimated 
parameters.

The toddlers’ looking behaviours also suggested information 
seeking. Although toddlers looked longer overall at the image 
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versus inaccurate trials: b = −0.09, P = 0.05, PBonf = 0.14, d = −0.07, 95% CI = −0.18–0.00; bin 1 similar–accurate versus inaccurate trials: b = −0.08, P = 0.10, 
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CI = −0.06–0.07). 0 s is the stimulus onset. b, The mean number of gaze switches for the dissimilar–accurate, similar–accurate and inaccurate trials; n = 61 
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The y axis is broken between 6 and 8 gaze switches. The points represent individual data points. The average values of the proportion of look time graph 
and data points on both graphs are jittered on the x axis to avoid stacking. Error bars are 95% confidence intervals.
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that they ultimately selected compared with the non-selected 
image (Extended Data Fig. 2), it took them longer to settle on the 
selected picture during inaccurate or similar trials. Toddlers also 
demonstrated more gaze switches between picture pairs for simi-
lar pictures. In the adult literature, it has been shown that the gaze 
switches between response options while making decisions are asso-
ciated with lower confidence in the decision18. Adults will therefore 
actively try to gather more information about a decision that they 
are uncertain about. Similarly, in our experiments, toddlers seem 
to actively gather extra information when faced with uncertain 
decisions, owing to the lower quality of available evidence, before 
committing to a decision. However, gaze switching could also ini-
tially reflect uncertainty and then promote the active process of 
gathering information. Future research is needed to disentangle  
these possibilities.Overall, we showed that, while deliberating, tod-
dlers exhibit a repertoire of behaviours that reflect gathering and 
assessment of evidence and decision-making processes, which are 
also engaged in overt uncertainty monitoring27,38. The developmen-
tal process that links these behavioural responses in toddlers to a later 
emerging ability to experience and report on subjective uncertainty 
is unclear at present. We recognize that these behaviours have not 
been uniformly accepted as indicators of metacognitive processes. 
For example, these behavioural indicators may have stemmed from 
associative learning in non-human animals and, therefore, require 
little to no access to representations of uncertainty9. Furthermore, it 
has been suggested that true metacognition can only be identified 
when children possess conceptual prerequisites about uncertainty39. 
Nevertheless, research in adults and children shows that response 
times and eye movements–and the underlying processes—are used 
as cues for explicit reports of uncertainty19,38,40. Indeed, current the-
ories of metacognition in adults posit that decision confidence is a 
second-order judgement that is based on the quality and quantity 
of evidence, computed separately from the decision itself41,42. Future 
research is needed to link the signatures of behavioural hesitation 
and information gathering observed here to the explicit uncertainty 
monitoring that is observed just a year later1.

In summary, we utilized a perceptual discrimination paradigm 
with a similarity manipulation that was hypothesized to elicit more 
decision uncertainty for similar trials compared with dissimilar 
trials. This paradigm enabled us to examine toddlers’ behaviours 
before they made an overt decision. The ability to delay responding 
when uncertain and selectively gather disambiguating information 
may bolster young children’s rapid early learning across domains.

methods
Our experiments were approved by the Institutional Review Board of the University 
of California, Davis. Informed consent was obtained from all of the parents, and 
the toddlers received a small book after each visit as a token of appreciation. On the 
basis of pilot data on an independent sample and previous research investigating 
perceptual similarity in toddlers34, we anticipated a medium effect size of similarity 
in the current studies. Both samples were sufficient to detect a small-to-medium 
main effect (F = 0.15, ηp

2 = 0.02) with 80% power and an alpha of 0.05 between our 
three conditions (similar–accurate, dissimilar–accurate and inaccurate).

Participants. Experiment 1. Eighty toddlers (aged 25–34 months; mean, 
28.85 months; 39 females) participated in this study. The household incomes of the 
families were as follows: less than US$15,000 (n = 1), US$15,000–25,000 (n = 4), 
US$25,000–40,000 (n = 7), US$40,000–60,000 (n = 16), US$60,000–90,000 (n = 16), 
more than US$90,000 (n = 33) and unreported (n = 3). Four toddlers were reported 
by their parents to be African American, 10 were Asian, 4 were American Indian 
or Alaskan, 56 were Caucasian, 3 were Native Hawaiian and the parents of 3 did 
not report a race. This sample included the first half of a larger longitudinal study 
investigating the development of uncertainty monitoring. Families were recruited 
from a local northern California community.

Some of the toddlers completed only one of the tasks owing to inattention in 
the other; six did not complete the eye-tracker task and six did not complete the 
touchscreen task. Of the remaining toddlers, one performed below chance in both 
the eye-tracker task and the touchscreen task and two performed below chance 
in the touchscreen task, leaving 73 participants in the eye-tracker analyses and 71 
participants in the touchscreen analyses.

Experiment 2. Experiment 2 involved a preregistered replication of experiment 1. 
The replication experiment was preregistered on the Open Science Framework and 
can be found at https://osf.io/nvf2j/. This study was preregistered on 31 July 2018.

Eighty toddlers (aged 25–33 months; mean, 29.09 months; 43 Females) 
participated in this study. The household incomes of the families were as follows: 
less than US$15,000 (n = 3), US$25,000–40,000 (n = 9), US$40,000–60,000 (n = 8), 
US$60,000–90,000 (n = 13), more than US$90,000 (n = 46) and unreported (n = 1). 
Eight toddlers were reported by their families to be African American, 14 were 
Asian, 1 was American Indian or Alaskan, 51 were Caucasian and the parents of 6 
did not report a race.

Some of the toddlers completed only one of the tasks owing to being 
uncooperative in the other or computer error; 13 did not complete the eye-tracker 
task (11 were uncooperative and 2 due to computer error) and 6 did not complete 
the touchscreen task (6 were uncooperative). Of the remaining toddlers, 6 
performed below chance in the eye-tracker task and 7 performed below chance 
in the touchscreen task, leaving 61 participants in the eye-tracker analyses and 67 
participants in the touchscreen analyses.

Materials. Both experiments used the same materials and procedure.

Perceptual task. The present task was a perceptual discrimination task administered 
on both a touchscreen monitor and an eye-tracker monitor. We collected data 
using these two methods during the same task to obtain precise response latencies 
(using a touchscreen version) and eye movement data (using an eye-tracker 
version). Toddlers touched the screen on the touchscreen task and pointed to their 
selected image on the eye-tracker task. Stimuli included photographs of common 
objects and animals43, which were presented partially occluded by grey squares 
superimposed over the centre of each image (Fig. 5). Stimuli were selected on the 
basis of age-of-acquisition norms44, and we verified with parents whether their 
child was familiar with the stimuli labels; the rare trials with reportedly unfamiliar 
labels were removed from the analyses.

During each trial, toddlers saw two of the occluded images side by side. They 
were required to select the target image by touching it (touchscreen task) or by 
pointing to it (eye-tracker task). There were 20 trials in each task—10 trials of 
perceptually and semantically similar items (for example, an elephant and a bear) 
and 10 trials of perceptually and semantically dissimilar items (for example, 
an elephant and broccoli; Fig. 5). Similar and dissimilar trials were presented 
in a pseudorandom order and the allocation of individual stimuli to similar or 
dissimilar trials was counterbalanced. Details of all of the possible stimuli pairs 
are provided at https://osf.io/t8p4g/. The eye-tracker and touchscreen tasks were 
yoked such that the same stimuli pairs were presented on both, but with different 
exemplars (for example, an elephant may be paired with a bear on both tasks, but 
the photographs depicted two different elephants and bears). This design was 
meant to equate processing demands across tasks while limiting practice effects.

Language measures. Parents were asked to report on a five-point scale, from ‘never/
not yet’ to ‘often’ how frequently the toddler uses the phrase ‘I don’t know’ in every 
day conversations. Parents completed this assessment during their laboratory visit. 
To assess general language ability, we used the MacArthur Bates Communicative 
Development Inventory-III (ref. 45). This questionnaire asks parents about their 
toddler’s vocabulary, grammar, semantics, pragmatics and comprehension. For this 
study, we used the toddler’s vocabulary score. Parents marked which of 100 words 
toddlers verbally express and we calculated the proportion of words the toddler 
expressed by dividing the number of checked off words by 100.

Procedure. Participation involved two visits, scheduled one week apart. On each 
visit, an experimenter played with the child for about 5 min outside the testing 
rooms until the child was comfortable before beginning the research tasks. 
Participants completed the eye-tracker task on the first visit and the touchscreen 
task on the second visit. All of the participants completed the tasks in this order, 
because pilot testing revealed that toddlers who experienced the touchscreen task 
first were more prone to leaning forward to touch the eye-tracker monitor, which 
interfered with successful data recording.

Dissimilar Similar

Fig. 5 | Example of dissimilar and similar trials. Children were asked 
to point to (eye-tracker task) or touch (touchscreen task) a target item 
depicted in one of the drawings (for example, ‘where is the elephant?’).
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The touchscreen task. The touchscreen task was administered on an upright 
monitor. Toddlers sat in front of the monitor on a child-sized chair and were 
instructed to respond by touching the screen. Just before starting the task, toddlers 
were told “Now we are going to find some things that are hiding behind boxes!”. 
For each trial, the experimenter said “Can you find the (target)?” on a blank screen 
and then pressed a button to present the trial. As soon as the child touched a side 
of the screen, the task advanced to a blank screen before starting the next trial. If a 
child refused to respond, the experimenter keyed in a separate code and moved on 
to the next trial. Response latencies were taken from the touchscreen task.

The eye-tracker task. The eye-tracker task was administered on a Tobii T-120 
17 inch eye-tracker monitor. Toddlers sat on their parents’ laps approximately 
60 cm from the monitor. The stimuli were 10 cm × 10 cm (visual angle, 9.53°) 
with 4.45 cm (visual angle, 4.24°) between them. Tobii Studio’s standard infant 
calibration was used; a cartoon cat was presented at five points on the screen 
accompanied by a sound effect. The experiment proceeded when the gaze of the 
toddlers was captured at all five points. Default Tobii fixation filter settings were 
used for eye-movement data reduction (velocity threshold, 35 px per sample; 
distance threshold, 35 px; minimum fixation duration, 83 ms). Parents wore dark 
sunglasses to ensure that their eye movements were not unintentionally recorded. 
Parents were instructed to refrain from speaking to their child during the task, and 
to hold their child to prevent them from leaning forward or moving excessively.

The eye-tracker task was identical to the touchscreen task, except that the 
toddler pointed to the chosen image and the experimenter immediately keyed in 
their response, advancing the task to a blank screen with a fixation cross in the 
middle. As in the touchscreen task, the experimenter keyed in a separate code if 
a child refused to respond. Looking times and gaze switches were taken from the 
eye-tracking task.

Analytical approach. The similarity manipulation was apparent to the experimenter 
collecting the data and, as such, data collection was not performed in a blinded 
manner. However, the experimenters were blinded to the hypotheses tested in the 
study. Data analyses were not performed blinded to the conditions of the experiments. 
Data distribution was assumed to be normal but this was not formally tested.

Drift–diffusion modelling. We tested our drift–diffusion models using the RStudio 
(v.3.3.1, 2016) package RWiener46 using response times generated from the 
touchscreen task. Each trial condition (similar and dissimilar) was fit separately 
with response thresholds representing accuracy (accurate versus inaccurate). 
We estimated a total of six parameters as follows: drift parameter (v), separation 
parameter (a) and non-decision parameter (t0) for the similar and dissimilar trials. 
The start point parameter z0 was fixed to 0.5, as there were no a priori differences 
that should occur for evidence accumulation towards a correct versus incorrect 
response. As the number of trials per participant was small compared with what 
is typically used to fit drift–diffusion models30, our initial analysis estimated 
parameters using all trials across the entire sample. Fit was assessed by comparing 
AIC and BIC fit indices and using a χ2 difference test to compare our main model 
to a baseline model (model with no similarity conditions). We then fit the models 
for each individual participant and assessed whether the average of these individual 
participants would yield similar findings to that of the initial sample-level model. 
Furthermore, we confirmed the results by utilizing a HDDM, which is robust to a 
small number of trials per participant (Supplementary Information).

Statistical analyses. All statistical tests used were two-sided. We tested our 
multilevel models for looking times using the RStudio (v.3.3.1, 2016) package 
nlme47. By utilizing a multilevel model, we were able to examine trial-level data 
and avoid casewise deletions that would have occurred due to participants not 
having data for all combinations of time bins and trial types. The multilevel model 
included fixed effects of time bin (0–1 s, 1–2 s and 2–3 s, dummy coded against 
0–1 s) and trial type (inaccurate, dissimilar–accurate and similar–accurate, dummy 
coded against inaccurate) and a random effect of individual.

Data processing. Experiment 1. Before data analysis, trials were removed for 
which no answer was provided. This resulted in 13 (0.88%) total trials across 
8 participants for the touchscreen task and 33 (2.23%) trials total across 16 
participants for the eye-tracker task. We also eliminated trials for which parents 
reported that their child was not familiar with the target word. This resulted in a 
total of 51 (3.45%) trials across 26 participants in the touchscreen task and a total 
of 56 (3.78%) trials from 26 participants in the eye-tracker task.

Once these trials were removed, the accuracy in each task was calculated and 
any participants with a chance accuracy of 0.50 or below were eliminated from the 
analyses. One participant performed below chance (<0.50) on both tasks, and two 
performed below chance on the touchscreen task.

For response latency analyses, we removed any trials that were probably fast 
responding errors (that is, responses produced before processing the stimuli 
and trials during which the participant was inattentive). The criteria for these 
eliminations were trials with response latencies of less than 700 ms in duration 
and trials in which the z-scored response latencies across each individual 
participant were ±3 s.d. The 700 ms cut-off was determined on the basis of research 

that indicated that the average time for 5-year-old children to make a motor 
response is approximately 750 ms (ref. 48). Given that this experiment involved 
a younger sample, we deemed that 700 ms was a reasonable response latency 
cut-off. This resulted in 35 (2.36%) trials across 35 participants being eliminated. 
Short-response-latency removals included 2 incorrect similar trials and 1 correct 
dissimilar trial. Long-response-latency removals included 5 correct dissimilar 
trials, 10 correct similar trials, 4 incorrect dissimilar trials and 13 incorrect similar 
trials. When analyses were conducted with these trials included, the results 
remained unchanged. For the drift–diffusion model estimations only, trials with 
response latencies of greater than 15 s were also removed on the basis of previous 
research showing that drift–diffusion models can be used reliably for response 
latencies up to 15 s (ref.30); 18 (1.23%) trials across 9 participants were eliminated 
due to this criterion. Furthermore, individual drift–diffusion parameters were 
considered to be outliers if z-scores were ±3 s.d. or more and were removed from 
analyses. This resulted in 8 parameter values across 4 participants (1 separation 
parameter, 1 drift parameter, 1 similar separation parameter, 1 similar drift 
parameter, 2 dissimilar separation parameters and 2 dissimilar drift parameters).

For all eye movement analyses, we used Tobii Studio software to create areas of 
interest (AOIs). These AOIs encompassed individual square images surrounding 
targets and lures, so that each trial had a target AOI and a lure AOI. For the 
looking time measure, we calculated the total proportion of looking time towards 
one of the AOIs in time bins of 1 s. For accurate trials, this was calculated as the 
total duration of looking time towards the target AOI in that time window divided 
by the total duration of looking time towards both AOIs. For inaccurate trials, 
the proportion was the total duration of looking time towards the lure AOI in 
the time window divided by the total duration of looking towards both AOIs. We 
were interested in the toddlers’ looking patterns during the decision process and 
before committing to a response; as the toddlers had an average response latency 
of 3.8 s we examined the first 3 s of the trial. We calculated gaze switches from 
one stimulus to the other during a trial and defined a switch as a fixation on an 
AOI that was preceded by a fixation on the other AOI, including cases in which 
there were fixations on other (non-AOI) areas of the screen in between fixations 
to AOIs. The first fixation to an AOI in a trial was not counted as a switch, so the 
minimum number of switches in a trial was zero. There was a subset of trials in 
which no fixations to AOIs were recorded—a total of 158 trials (10.68%) from 36 
participants. These trials were excluded from the analyses.

Experiment 2. The same process of trial eliminations as described experiment 1 
was followed in experiment 2. A total of 13 (0.88%) trials across 8 participants for 
the touchscreen task and a total of 14 (1.06%) trials across 5 participants in the 
eye-tracker task were removed due to participants not providing answers. A total 
of 61 (4.12%) trials across 28 participants in the touchscreen task and 52 (3.95%) 
trials from 26 participants in the eye-tracker task were eliminated on the basis of 
the participants not knowing the target word. Seven participants were removed 
due to performing below chance on the touchscreen task, and six were removed for 
performing below chance on the eye-tracker task. For response-latency analyses, 
38 (2.57%) trials across 37 participants were eliminated. Short-response-latency 
removals included one incorrect similar trial and one correct dissimilar trial. 
Long-response-latency removals included 16 correct dissimilar trials, 14 correct 
similar trials, 2 incorrect dissimilar trials and 4 incorrect similar trials. In the 
drift–diffusion analyses, 28 (1.89%) trials across 13 participants were removed for 
having response latencies longer than 15 s. Moreover, 9 parameter values across 
6 participants were eliminated for being outliers (1 separation parameter, 1 drift 
parameter, 2 similar separation parameters, 2 similar drift parameters, 1 dissimilar 
separation parameter, 1 dissimilar drift parameter and 1 dissimilar non-decision 
parameter). Similar to experiment 1, we chose to analyse the first 3 s of trials for 
look time analyses as the average response time was 4.6 s. Finally, a total of 178 
(13.52%) trials from 37 participants was eliminated from eye movement analyses 
owing to participants not looking at either AOI during the trial.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current studies are available at the 
Open Science Framework repository (https://osf.io/t8p4g/).

Code availability
The code generated and used during the current studies are available at the Open 
Science Framework repository (https://osf.io/t8p4g/).
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Extended Data Fig. 1 | Quantile plots for drift–diffusion model. Lines with x markers are plotted based on observed data and dashed lines with o markers 
are the simulated data produced by our complete model in Experiment 1 (a) and Experiment 2 (b). Graphs show the .1, .3, .5 (median), .7, and .9 quantiles 
(stacked vertically) plotted against response proportion for each of the two conditions (dissimilar and similar). Similar/Dissimilar labels are placed at the 
level on x-axis corresponding to the response proportion for that type of trial. Correct response proportions are plotted to the right, and incorrect response 
proportions are plotted to the left. Predicted values qualitatively resemble observed values, indicating good fit of our drift–diffusion models to the data.
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Extended Data Fig. 2 | Response latencies and mean proportion looktime in the eye tracker task. Mean response latencies for dissimilar-accurate, 
similar-accurate, and inaccurate trials for Experiment 1 (a) and Experiment 2 (c). Mean proportion looktime for the time bin prior to the average response 
latency for dissimilar-accurate (2–3 seconds for Experiment 1, 4-5 seconds for Experiment 2), similar-accurate (3-4 seconds for Experiment 1, 4-5 seconds 
for Experiment 2), and inaccurate (4-5 seconds in Experiment 1, 5-6 seconds for Experiment 2) trials for Experiment 1 (b) and Experiment 2 (d).  
Points represent individual data points. Data points on both graphs are jittered on the horizontal axis to avoid stacking. Error bars are 95 percent 
confidence intervals.
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Extended Data Fig. 3 | Effect of Similarity on Reaction time inaccurate trials. Multilevel model results showing the effect of similarity on reaction times 
for inaccurate trials for Experiment 1 (a) and Experiment 2 (b). Results displayed here are for models dummy coded relative to dissimilar-inaccurate  
trial type.
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Extended Data Fig. 4 | Looking time multilevel model. Multilevel model results for Experiment 1 (a) and Experiment 2 (b). Results displayed here are 
for models dummy coded relative to inaccurate trial type and time bin 1. Models were evaluated for significance with a chi-squared difference test. Both 
models were statistically different from an intercept only model (Experiment 1: X2 (8) = 64.45, p < .001; Experiment 2: X2 (8) = 17.87, p = .02).
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Data collection The eye tracker task was administered on a Tobii T-120 17-in eye-tracker monitor. Experiments were coded using Tobii Studio, version 
3.0.9. For the touchscreen task experiments were coded using Direct RT version 2006.2.0.28. 

Data analysis All statistical analyses were done using R version 3.3.1. 
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Study description The studies used a quantitative cross-sectional design.  

Research sample Experiment 1: Eighty toddlers ages 25-34 months (M = 28.85, 39 females) participated in this study. Families’ household incomes were 
less than $15,000 (n = 1), $15,000-$25,000 (n = 4), $25,000-$40,000 (n = 7), $40,000-$60,000 (n = 16), $60,000-$90,000 (n = 16), more 
than $90,000 (n = 33) and unreported (n = 3). Four toddlers were African American, 10 were Asian, 4 were American Indian or Alaskan, 
56 were Caucasian, 3 were Native Hawaiian, and 3 did not report a race. Experiment 2: Eighty toddlers ages 25-33 months (M = 29.09, 43 
Females) participated in this study. Families’ household incomes were less than $15,000 (n = 3), $25,000-$40,000 (n = 9), $40,000-
$60,000 (n = 8), $60,000-$90,000 (n = 13), more than $90,000 (n = 46) and unreported (n = 1). Eight toddlers were African American, 14 
were Asian, 1 were American Indian or Alaskan, 51 were Caucasian, and 6 did not report a race. This sample was chosen because it was 
the first wave of a longitudinal study examining the development of uncertainty monitoring from 2-3 years of age.

Sampling strategy The sample was a convenience sample. Based on pilot data on an independent sample and previous research investigating similarity in 
toddlers (Arias-Trejo & Plunkett, 2010), we anticipated a medium effect size of similarity in the current study. Our sample is sufficient to 
detect a small to medium main effect (f = .15, np2 =.02) with 80% power and an alpha of .05 between our three conditions (similar-
accurate, dissimilar-accurate, and inaccurate). Since the studies are part of a larger longitudinal study, data collection ended when we 
had reached the predetermined number of participants.  

Data collection An eye-tracking computer and touch screen computer were utilized for data collection of the variables. In addition, parents filled out 
language and demographic surveys with pen and paper. Children sat on the parents lap during the eye-tracking task and for the 
touchscreen task, only the experimenter and the child were present. The researcher was aware that there was an experimental 
condition, but did not know which trials were under which condition. 

Timing Data collection occurred between October 2014 and December 2017. Some pilot testing occurred before these dates. 

Data exclusions Trials were excluded in which no answer was provided (Experiment 1: 13 (.88%) total trials across 8 participants for the touchscreen task 
and 33 (2.23%) trials total across 16 participants in the eye tracker task. Experiment 2: Thirteen (.88%) total trials across 8 participants for 
the touchscreen task and 14 (1.06%) trials total across 5 participants in the eye tracker task) and in which parent indicated that the child 
was not familiar with the target word (Experiment 1: 51 (3.45%) trials total across 26 participants in the touchscreen task and 56 (3.78%) 
trials total from 26 participants in the eye tracker task. Experiment 2: Sixty-one (4.12%) trials across 28 participants in the touchscreen 
task and 52 (3.95%) trials from 26 participants in the eye tracker task). Once these eliminations were made, children with < 50% accuracy 
scores were removed from analyses (Experiment 1: One participant performed below chance (<.50) on both tasks, and two performed 
below chance on the touchscreen task. Experiment 2: Seven participants were removed due to performing below chance on the 
touchscreen task, and 6 were removed for performing below chance on the eye tracker task). For response time analyses, trials with 
short response times (less than 700 ms) and trials with z-scored response latencies across individual participants were +/- 3 standard 
deviations were removed (Experiment 1: This resulted in 35 (2.36%) trials across 35 participants. Experiment 2: 38 (2.57%) trials across 
37 participants). For drift diffusion analyses, trials with response latencies > 15 seconds were removed due to the limitation of these 
models only being reliable for faster trials based on previous research (Experiment 1: 18 (1.23%) trials across 9 participants. Experiment 
2: 28 (1.89%) trials across 13 participants ). Individual drift parameters were removed for being outliers of +/- 3 standard deviations 
(Experiment 1: 8 parameter values across 4 participants. Experiment 2: 9 parameter values across 6 participants). Finally, for looking time 
analyses, trials were removed if the eye-tracker reported no fixations on either of the stimuli (Experiment 1: 158 trials (10.68%) total 
from 36 participants. Experiment 2: 178 (13.52%) trials total from 37 participants). 

Non-participation No participants dropped out/declined participation.

Randomization Studies were within subject, no randomization was required. 
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Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited from a database of names of families who had previously expressed interest in participating in child 
development studies. These families were originally contacted about interest when the child was an infant by state birth records. 

Ethics oversight This study was approved by the Institutional Review Board of the University of California, Davis.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.


	Response latencies and eye gaze provide insight on how toddlers gather evidence under uncertainty

	Results of experiment 1

	Accuracy. 
	Response latencies and drift–diffusion parameters. 
	Response latencies
	Drift–diffusion parameters

	Eye movements. 
	Trajectory of the proportion of looking time to selected responses
	Gaze switches


	Results of experiment 2

	Accuracy. 
	Response latencies and drift–diffusion parameters. 
	Response latencies
	Drift–diffusion parameters

	Eye movements. 
	Trajectory of proportion looking times to selected responses
	Gaze switches


	Discussion

	Methods

	Participants
	Experiment 1
	Experiment 2

	Materials
	Perceptual task
	Language measures

	Procedure
	The touchscreen task
	The eye-tracker task

	Analytical approach
	Drift–diffusion modelling
	Statistical analyses

	Data processing
	Experiment 1
	Experiment 2

	Reporting Summary

	Acknowledgements

	Fig. 1 Response latencies and parameter estimates for the touchscreen task of experiment 1.
	Fig. 2 The proportion of looking times and switch counts for the eye-tracker task of experiment 1.
	Fig. 3 Response latencies and parameter estimates for the touchscreen task of experiment 2.
	Fig. 4 The proportion of looking times and switch counts for the eye-tracker task of experiment 2.
	Fig. 5 Example of dissimilar and similar trials.
	Extended Data Fig. 1 Quantile plots for drift–diffusion model.
	Extended Data Fig. 2 Response latencies and mean proportion looktime in the eye tracker task.
	Extended Data Fig. 3 Effect of Similarity on Reaction Time Inaccurate Trials.
	Extended Data Fig. 4 Looking Time Multilevel Model.




