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Prior literature has primarily focused on the negative influences of misleading external sources on
memory judgments. This study investigated whether participants can capitalize on generally reliable
recommendations in order to improve their net performance; the focus was on potential roles for
metacognitive monitoring (i.e., knowledge about one’s own memory reliability) and performance
feedback. In Experiment 1, participants received explicit external recommendations (Likely Old or Likely
New) that were 75% valid during recognition tests containing deeply and shallowly encoded materials.
In Experiment 2, participants received recommendations of differing validity (65% and 85%). Discrim-
ination improved across both experiments when external recommendations were present versus absent.
This improvement was influenced by metacognitive monitoring ability measured in the absence of
recommendations. Thus, effective incorporation of external recommendations depended in part on how
sensitive observers were to gradations of their internal evidence when recommendations were absent.
Finally, corrective feedback did not improve participants’ ability to use external recommendations,
suggesting that metacognitive monitoring ability during recognition is not easily improved via feedback.
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Metacognition, or the ability of observers to introspect about the
quality of internal cognitive processes, plays an important role in
guiding future cognition and behavior. In the case of memory
attribution, metacognition has been studied with judgments of
learning (JOL). During such judgments, participants rate their
mastery of a newly learned fact or association by predicting their
likelihood of later successful retrieval, a skill that may be impor-
tant for the efficient allocation of study (for a review, see Son &
Kornell, 2008). In other words, the extent to which an observer is
accurate in his or her assessment of a memory’s durability or
robustness may constrain how appropriately he or she can allocate
study to that particular information, given future goals. Thus,
participants with poor metacognitive abilities who inaccurately
predict their future performance would be assumed to poorly
allocate study opportunities.

Whereas JOLs are prospective judgments, here we focus on
immediate retrospective judgments of confidence during item rec-
ognition. When providing recognition confidence, participants are
not predicting future performance but instead are assessing the
robustness of current memory evidence in the current testing
situation. Reporting confidence is clearly metacognitive, and the
degree to which confidence and accuracy are reliably linked during
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recognition has implications for applied areas such as eyewitness
identification. The fact that increasing recognition confidence usu-
ally corresponds to increasing accuracy (Roediger, Wixted, &
DeSoto, 2012) suggests that observers have some insight into the
nature of the underlying recognition evidence variable or variables,
although recognition accuracy and confidence can be decoupled
through various manipulations (Busey, Tunnicliff, Loftus, & Lof-
tus, 2000; Chandler, 1994; Dobbins, Kroll, & Liu, 1998). For the
current study, we were interested in the degree to which observers
can subjectively report gradations in memory evidence through
subjective confidence ratings on a trial-by-trial basis, and we take
this as our operational definition of metacognitive monitoring
during recognition judgment. The reason we are interested in this
putative skill is because, as we discuss below, metacognitive
monitoring skill may influence the ability of observers to adap-
tively bias their recognition judgments in the presence of partially
diagnostic environmental cues.

Critically, outside the laboratory, recognition does not take
place in a vacuum, and external or environmental factors often
signal the likely memory status of encountered stimuli. For exam-
ple, an approaching individual’s likely memory status (familiar or
novel?) may be signaled by the location (are you in a place where
most people tend to be familiar?), time of day (are you likely to
encounter familiar people at this time?), or a nearby friend’s
explicit opinion about whether or not he or she recognizes the
approaching individual. Using such external cues is statistically
ideal because they convey valuable statistical priors when one is
making recognition judgments, and accurate metacognitive mon-
itoring would presumably be important for modulating the degree
to which an external cue influenced the current judgment. For
example, an observer who accurately deems his or her internal
evidence as only weakly favoring a recognition decision should be
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much more heavily influenced by an external cue than an observer
who accurately deems his or her internal evidence as highly
diagnostic in the same situation. In contrast, if an observer is
unable to effectively monitor internal evidence levels, he or she
will be prone to over- or underreact to the cues in the environment.
We will return to the potential dependence between efficient cue
use and metacognitive monitoring ability after discussing the basic
signal detection model of recognition judgment below.

To more concretely illustrate the utility of external cue use
during recognition, it is necessary to more formally model the
decision process. The most popular decision model applied to
recognition judgments in whole or in part (Wixted & Mickes,
2010; Yonelinas, 2002) is signal detection theory (SDT; Mac-
millan & Creelman, 2005). Under the model, recognition evidence
is assumed to be continuous and normally distributed for the
studied and new classes of materials. The distance separating these
evidence distributions corresponds to the familiarity accrued
through recent study, and, because the evidence for the two classes
overlaps, observers must place a decision criterion along the evi-
dence axis in order the categorically rate items as old or new. The
original model and several related variants currently in use assume
that observers use statistically ideal information when placing this
criterion (Glanzer, Hilford, & Maloney, 2009; Pastore, Crawley,
Berens, & Skelly, 2003; Swets, Tanner, & Birdsall, 1961; Turner,
Van Zandt, & Brown, 2011). Thus, they do not render judgments
based on raw stimulus strength or intensity values; instead, they
estimate the relative likelihoods that encountered strengths would
arise under the hypothesis the item arose from one candidate
distribution (e.g., old items in a recognition test) versus the other
candidate distribution (e.g., new items in a recognition test), se-
lecting the response reflecting the highest likelihood. More for-
mally, this is captured by taking the ratio of the likelihoods, which
are specified by the heights of the old and new item distributions
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Figure 1. Optimal criteria shifts under external recommendations. The
figure depicts how optimal criteria location shifts as a function of external
recommendations under a likelihood ratio signal detection theory (SDT)
model of recognition memory. The x-axis represents likelihood ratios, that
is, the probability density of the target distribution divided by that of the
lure distribution for each location. Under conditions with no external cue
and equal numbers of old and new items, the ideal criterion location is at
the intersection of the two distributions. Under conditions with a 75% valid
Likely Old cue, the ideal observer should shift his or her decision criterion
leftward to the point on the decision axis where the likelihood ratio is 1 to
3. Under conditions with a 75% valid Likely New cue, the ideal observer
should shift his or her decision criterion rightward to the point on the
decision axis where the likelihood ratio is 3 to 1. Notice that the response
to the recognition strength indicated by an X changes depending on the
cuing condition.

at each point on the axis. In this case, the corresponding decision
axis represents the odds of the item arising from the old relative to
new item distributions, given its strength value (see Figure 1). The
likelihood ratio decision model is statistically ideal because it
incorporates all the information necessary to maximize preferred
outcomes. For example, in order to maximize the total proportion
of correct responses, the criterion should be placed at a likelihood
ratio of 1, the point at which either alternative is equally likely
given equal numbers of old and new test items. Alternatively, if a
payout is imposed such that differential costs and/or benefits
accrue for different judgment outcomes, the ideal likelihood ratio
criterion can be easily recalculated to determine the location max-
imizing net winnings under this particular payout (Macmillan &
Creelman, 2005).

If one assumes the likelihood ratio SDT model, then integration
of external cues, such as external recommendations, into memory
judgments is straightforward provided the reliability of the source
is known (cf. Jaeger, Lauris, Selmeczy, & Dobbins, 2012). For
example, in the absence of any external cue the observer calculates
2 to 1 odds that a given encountered item was studied (i.e., the
likelihood ratio is 2). This should serve as the basis for a reason-
ably confident “old” judgment. However, if he or she also received
an external cue indicating there were 1 in 3 odds that the presented
item would be old (i.e., the item is more likely new than old), the
judgment should reflect both this prior and the internal evidence
noted above. Under Bayes’ rule this is done by simply multiplying
the two odds (2/1 X 1/3 = 2/3). In this case, despite the internal
evidence favoring an old judgment, the ideal judgment is that the
item is in fact new.

Under the likelihood ratio SDT model, this change in decision
outcomes reflects shifts of the decision criterion. If the cue is 75%
valid and indicates the upcoming item is likely old, the criterion
shifts leftward to a point on the decision axis where the likelihood
ratio is 1 to 3. This anticipates the high likelihood that the upcom-
ing item is old, and it captures the Bayesian philosophy that
decisions should accord with strongly predictive priors unless the
current evidence overwhelmingly suggests otherwise. If the cue
instead indicates the item is likely new, the criterion should shift to
the point where the likelihood ratio is 3 to 1 (see Figure 1).

By optimally moving the decision criterion under external cu-
ing, as described above, observers maximize their long-term ac-
curacy and elevate their performance relative to situations where
external cues are unavailable. For example, the maximum percent-
age of correct responses possible for an observer with a d’ of 1.00
and no environmental cues is 69%. In contrast, if each item is
preceded by a predictive cue that is known to be 75% valid, the
maximum percentage of correct responses becomes 78%. Thus,
the likelihood ratio SDT model concretely illustrates the beneficial
nature of integrating external cues and internal evidence during
recognition judgments through opportunistic shifting of a decision
criterion. Observers who adaptively position the criterion on a
trial-by-trial basis in response to external cues stand to gain con-
siderably. Of course, doing so requires not only knowledge of the
external cue’s validity but also intimate knowledge of the quality
of one’s internal evidence. If the likelihood ratio variant of the
signal detection model were literally accurate, every observer
would be capable of optimally incorporating external recommen-
dations provided the validity of those recommendations was
known. However, there are several reasons to suspect that observ-
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ers do not have explicit access to such statistically ideal informa-
tion when making recognition judgments. First, it is clearly the
case that most observers do not understand likelihood ratios, nor
do they have an explicit model of the distributions of target and
lure evidence sufficient to calculate likelihood ratio statistics
(Hintzman, 1994). Second, they do not shift criteria to an appro-
priate extent given testwide payoff structures (Healy & Kubovy,
1978), nor do criteria shift sufficiently in response to increases in
performance (Stretch & Wixted, 1998). Additionally, in the ab-
sence of feedback or explicit warnings, recognition criteria are
heavily insensitive to the relative preponderance of old versus new
probes present in the test list (e.g., Cox & Dobbins, 2011). Such
considerations and findings suggest that the likelihood ratio evi-
dence characterization is best viewed as an ideal solution, with
observers varying considerably in how closely they can approxi-
mate this ideal approach.

In the current report, we test the idea that one limiting factor in
this approximation is the varying degree to which individuals are
aware of subtle trial-to-trial gradations in their internal memory
evidence, namely, their metacognitive monitoring ability. An in-
dividual who is highly insensitive to gradations in internal evi-
dence cannot have a very accurate estimate of the correspondence
between internal evidence values and likelihood of success and
hence would be prone either to shifting the criterion too little in
response to external cues or, potentially just as ineffective, to
shifting the criterion too much in the face of an external recom-
mendation. To see why under- or overshifting the criterion is
nonoptimal, it helps to graph the relationship between the size of
criterion shifts, the internal resolution of the observer, and the
validity of the external cue. Figure 2 shows this relationship for
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two hypothetical observers with d’ values of 1.0 and 1.5. The
x-axis indicates the size of the criterion shift (in standard deviation
units — C) with respect to the intersection of evidence distributions.
The y-axis is the maximum percentage correct given the size of the
criterion shift, and the separate lines reflect the different external
cue validities. The intercept of each line is the observer’s maxi-
mum percentage correct in the absence of any criterion shift and,
hence, his or her baseline, uncued recognition ability. Three things
are apparent from the graphs. First, for any cue validity, the
observer can improve performance relative to baseline by shifting
the criterion. The maximum of the initially upward trajectory in
every curve indicates the maximum possible improvement. Sec-
ond, when the cue’s reliability is higher than the participant’s
baseline performance, there is a diminishing return as the criterion
shift increases. In other words, there is a peak level for shifting,
after which the percentages begin to decline and asymptote at the
level of the cue’s reliability. Because performance is higher than
baseline even when overresponding to the cues (i.e., shifting the
criterion more than the maximum value indicated on the graph),
this still constitutes a beneficial, although nonoptimal, strategy.
Finally, when the cue’s reliability is lower than the participant’s
baseline performance, there is a potential cost involved in shifting
the criterion too much. As the shift increasingly surpasses the
optimal point, performance will decrease to that of the cue, which
is below the observer’s baseline capabilities. Thus, the figure
shows clearly that in order to effectively use external cues, ob-
servers must shift the criterion an appropriate degree. To do so
requires knowledge about the relative reliability of one’s internal
evidence in relationship to the reliability of the external cue. In the
current report we test the hypothesis that successful use of external
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Optimal degree of criterion shift under varying cue validities. The graphs describe the performance

benefit that can be achieved through criterion shifts across varying levels of cue validity for two levels of
observer d’ (1.0 to the left and 1.5 to the right). The x-axis represents the size of the criterion shift (in standard
deviation units of C), the y-axis represents the maximum percentage correct during cued performance, and the
lines represent varying cue validities. The maximum height of each line indicates the maximum possible
improvement achievable for a given cue validity. When cue validity is higher than the observer’s baseline
accuracy, performance benefits will always be observed through shifts, even if the size of the criterion shift is
nonoptimal. However, in this case, as the size of the shift increases there are diminishing returns in performance
benefit. In contrast, when cue validity is lower than the observer’s baseline accuracy, any criterion shifts after
the optimal point result in performance declines relative to baseline accuracy. A color version of this figure is
available online as supplemental material (http://dx.doi.org/10.1037/a0029469.supp).
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cues depends in part upon metacognitive monitoring abilities.
Before describing the paradigm testing this idea more fully, we
briefly discuss one area of confusion that often arises when one
talks about elevating accuracy through adaptive movement of a
decision criterion.

Although the signal detection measure d’ ideally provides a
criterion-free estimate of accuracy—that is, d’ values are (or
should be) insensitive to shifts in the decision criterion—this
characterization is true only under a very narrow set of conditions,
namely, those in which the criterion remains fixed across the set of
trials in question. For example, the two criterion positions illus-
trated in Figure 1 (under Likely Old and Likely New cues) yield
identical d’" values and can be thought of as two observers with
identical resolution but different criteria taking the same recogni-
tion test. However, if the criterion is moving across the different
trials of the test, the measured discrimination performance of the
individual depends upon both the relative position of the evidence
distributions (d") and the manner of the criterion movement across
the individual test trials. As illustrated by Benjamin, Diaz, and
Wee (2009; see also Dobbins & Han, 2007), random movement of
the criterion across the trials will yield lowered measured perfor-
mance relative to the hypothetical internal resolution. That is, d’
calculated from hits and false alarms under a noisy, random
criterion will be lower than that which was theoretically possible
given the internal evidence distributions of the observer and a
fixed criterion.

To see why this is the case, consider a massive random move-
ment from trial to trial of plus or minus 4 standard deviation units
(with respect to the intersection of the distributions) for an ob-
server with an internal d’ of 1.0. On trials in which the movement
is leftward, the observer will perfectly identify all of the old items
presented on those trials (hit rate = 1) but will also incorrectly
classify all of the new items as “old” (false alarm rate = 1),
because of the extreme leftward location of the criterion. However,
this only constitutes half of the total test trials. For the remaining
half, there are extreme rightward criterion shifts, which will yield
zero hit and false alarm rates because of the extreme rightward
criterion position. Thus, the measured net hit rate for the entire test
in which there were both leftward and rightward movements is
S5(1) + .5(0) and the measured false alarm rate is .5(1) + .5(0).
Because the net hit and false alarm rates are both .5, this leads to
an accuracy estimate, d' of essentially 0, far below the internal
resolution of 1.0. Of course, less extreme random variation will
yield lower performance costs, but the point is the same; random
movements from trial to trial lower measured performance. These
movements are “random” because they are completely uncorre-
lated with the test status of the items on each trial. In other words,
one cannot predict the location of the criterion given the knowl-
edge that an item is studied or novel.

Now consider if the criterion movement is not random but is
actually informed by a reliable external cue or recommendation on
each trial. Taking the extreme case again, consider a cue that is
99% valid. Here, during an old recommendation by the cue (which
occurs on half of the trials), the observer shifts the criterion
extremely leftward (because of the high odds in favor of an old
item, given the high cue validity). For this half of the trials, the
appropriate SDT equations yield a hit rate of .9997 and a false
alarm rate of .9927. The fact that both values are essentially 1
reflects the extreme leftward location of the optimal criterion

position given the high cue validity. On the remaining half of the
trials in which the cue recommends a new response, the hit and
false alarm rates are approximately .0073 and .0003, respectively.
These values are extremely low because the criterion location is
now positioned to the extreme right. Critically, however, unlike the
random movement case above, the cue recommendations and
hence the criterion shifts are not independent of the actual status of
the items, because the cues are highly valid. Thus, the testwide hit
rate is the proportion of times the cue recommends an old response
times the hit rate under that scenario [.99(.9997)] plus the propor-
tion of times the cue invalidly recommends a new response times
the hit rate under that scenario [.01(.0073)], or about .99. The false
alarm rate is the proportion of times the cue invalidly recom-
mended an old response times the false alarm rate under that
scenario [.01(.9927)] plus the proportion of times the cue validly
recommended a new response times the rate at which the observer
nonetheless incorrectly classified the item as new [.99(.0003)], or
about .01. These proportions yield a d" estimate of ~4.6, which is
well in excess of the observer’s internal resolution in this example.

The gains that are possible are less extreme as cue validity
decreases, but the general point holds. If the observer positions the
criterion adaptively on every trial of a test, measured performance
will exceed internal resolution. This simply reflects the fact that
two sources of reliable information (cues + internal evidence)
optimally combined will necessarily yield higher performance than
one source (internal evidence) in isolation. Although the observer
is expected to make a high rate of errors on invalidly cued trials,
these occur extremely infrequently as the cue becomes increas-
ingly valid; thus, they play a more minor role in the overall rates
for the entire test. For example, in the case of a 99% valid cue and
a test consisting of 100 old and 100 new items, there will be
exactly 2 trials in which the cue provides an incorrect recommen-
dation, whereas the cue will provide the correct answer on 198
trials. Clearly then, the costs of inappropriate criterion shifts for 2
trials will be largely outweighed by the gains of appropriate
criterion shifts on 198 trials, as illustrated in the example above.!

Thus, the SDT model and Bayesian reasoning dictate that if
external cues are available and reliable, observers should use them
to adaptively bias their decisions by combining both the cue and
the internal evidence (i.e., by appropriately shifting decision cri-
teria). However, to the degree that observers differ in the ability to
assess the quality of their own internal memory evidence, there
will be variation in how effectively they can incorporate the
external cues. As mentioned previously, if one does not know the
quality of one’s own memory evidence, it is impossible to consis-
tently incorporate external recommendations in order to bolster
performance. Couched in the language of the likelihood ratio SDT
framework, an observer with poor metacognitive monitoring is one
who does not have reliable estimates of the relative likelihoods that
memory strength signals originated from old versus new item

! For simplicity, both examples of criterion movement used an observer
with a fixed d’ of 1.0. However, the relative costs (of random movements)
and benefits (of informed movements) are also dependent upon the accu-
racy of the observer. For observers with increasing internal resolution, both
the costs and the benefits of criterion movement are smaller than those for
observers whose internal resolution is poor.
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classes and who hence cannot shift the criterion to the adaptive
positions in response to external recommendations.

Below we test this general idea in two experiments, in which we
compare trials where valid external anticipatory cues are available
and trials where they are not (uncued). Within the paradigms we
calculate a measure of metacognitive monitoring during the un-
cued trials based on the hypothesis that observers with higher
metacognitive monitoring ability will also demonstrate a greater
ability to utilize the external cues when available. In Experiment 1,
we manipulated levels of processing during encoding in order to
assess whether participants are able to benefit from external cues
under varying levels of memory evidence. Under the signal detec-
tion model, the optimal criterion shift in units of standard deviation
(C measure) should be smaller when internal evidence is accurate
than when it is inaccurate. For example, with a 75% cue, an
observer should shift the criterion 1.10 units under situations in
which internal 4" is 1.0 and should shift it 0.73 units under
conditions in which d' is 1.5. This simply reflects the idea that as
internal resolution increases, external cues should become less
influential. In Experiment 2, we tested the complementary idea by
manipulating the level of cue validity in order to assess whether
participants are able to differentially benefit from varying cue
validities. For a fixed level of internal resolution, one should react
more strongly as the validity of the external cue increases.

Additionally, we consider whether the presence or absence of
feedback helps in this ability, given that prior work has suggested
that trial-by-trial feedback may be necessary for accurate repre-
sentations of statistical likelihoods (Turner et al., 2011) and that
feedback results in more appropriate criterion placement (Estes &
Maddox, 1995; Kantner & Lindsay, 2010; Rhodes & Jacoby, 2007;
Verde & Rotello, 2007). This prior work implies that feedback
may be crucial for participants to instantiate a criterion shift,
presumably because feedback serves to help participants realize
that a manipulation is present and they need to change their pattern
of responding. In our experiments, feedback may not be pertinent
to inform participants of the need to shift their criteria, because
participants already have explicit knowledge of cue validity and
we encourage them to incorporate cues. Instead, feedback may
serve to help participants fine-tune this process. As is evident in
Figure 1, the size of the appropriate criterion shift is determined by
relative balance of internal versus external reliability, with the
potential for observers to shift too much or too little given their
internal resolution and the external cue’s validity (see Figure 2). If
they were under- or overresponsive to the external cue, feedback
may help appropriately lessen or increase the size of the shifts.
Thus, we hypothesized that feedback might result in more appro-
priate criterion shifts in response to the external recommendations
and, hence, a somewhat greater improvement in performance when
one is comparing uncued to cued recognition accuracy.

Experiment 1

Method

Participants. Experiment 1 included 37 Washington Univer-
sity students (average age = 20.9 years, 23 female) who were paid
$20 for participation. Three participants were removed due to low
performance (d' < 0.19), leaving 34 participants for analyses.
Although we removed participants with near-chance performance

under the assumption that they were unlikely to be engaged during
the task, all results still hold when low performers are included in
the analysis. All participants provided informed consent in accor-
dance with the university’s institutional review board.

Materials and procedure. Testing was self-paced, with ob-
servers entering their responses via keyboard and presentation and
timing controlled via Matlab’s Psychophysics Toolbox (Version
3.0.8; Brainard, 1997; Pelli, 1997). For each participant, words
were randomly selected from a 1,216-item pool, with an average of
7.09 letters and 2.34 syllables and a Kucera—Francis frequency of
8.85.

We used a 2 X 2 X 2 mixed design with repeated factors of
levels of processing (deep vs. shallow targets present during test)
and cue condition (cued vs. uncued) and a between-subjects factor
of feedback (present vs. absent). Participants completed four
study/test cycles, with two tests preceded by deep encoding and
two tests preceded by shallow encoding. The order of deep and
shallow tests sequentially alternated, with half the participants
beginning with the shallow test condition and half of them begin-
ning with the deep test condition (100 study items and 200 test
items for each cycle). During shallow encoding, participants indi-
cated whether the first and last letter of each presented word were
in alphabetical order, whereas during deep encoding they per-
formed an abstract/concrete rating. Recognition testing immedi-
ately followed each study phase, with participants indicating
whether randomly intermixed old and new items were studied
(“old”) or novel (“new”; 100 old items, 100 new items). On 120 of
the test trials (60 old, 60 new) a probabilistic mnemonic cue, Likely
Old or Likely New, was presented 1 s before the probe word
appeared. These cues were correct 75% of the time, with partici-
pants correctly informed that “cues will be correct 75% of the time.
This means about 7 out of 10 times the cue will give you the
correct answer and should be useful for your recognition judg-
ment.” In addition to the cued trials, there were 80 (40 old, 40 new)
uncued trials intermixed in the test phase, with participants notified
that some portion of the probes would be presented without antic-
ipatory cues. After each old/new recognition decision, participants
provided confidence on a 6-point scale ranging from 50% (guess-
ing) to 100% (certain) in 10% intervals. Corrective feedback
immediately followed for half the participants.

Results and Discussion

The order in which the two levels of processing conditions were
administered did not influence accuracy (d') or criteria (C), nor did
it interact with other factors. Given this, we collapsed across test
order in the analyses below. Hit rates of 1 and false alarm rates of
0 were corrected with the formulas suggested by Macmillan and
Creelman (2005), 1 — 1/(2N) for hits and 1/2N for false alarms,
where N is the number of trials.

Does accuracy improve with provision of cues?  Descriptive
statistics demonstrating performance and confidence as a function
of cuing condition are presented in Tables 1 and 2.

To assess potential gains in accuracy (d') as a function of cue
condition, we used a 2 X 2 X 2 mixed analysis of variance
(ANOVA) with repeated-measures factors of levels of processing
(deep vs. shallow targets present during test) and cue condition
(cued vs. uncued) and a between-subjects factor of feedback (pres-
ent or absent). Results revealed a main effect of levels of process-
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Table 1

Accuracy (d’) and Average Response Rates (Hits and False Alarms) Under Uncued and Cued Conditions With Standard Deviations

in Parentheses

Uncued Cued
False
Condition d Hits alarms d Hits False alarms
Experiment 1
Shallow 0.91 (0.39) 0.65 (0.13) 0.32(0.10) 1.17 (0.37) 0.69 (0.10) 0.26 (0.08)
Deep 2.09 (0.66) 0.87 (0.20) 0.22 (0.10) 2.32(0.62) 0.89 (0.07) 0.18 (0.08)
Experiment 2
65% predictive 1.20 (0.40) 0.73 (0.09) 0.29 (0.10) 1.30 (0.48) 0.73 (0.11) 0.27 (0.10)
85% predictive 1.65 (0.39) 0.79 (0.10) 0.21 (0.06)

ing, F(1, 32) = 174.32, MSE = 0.26, p < .001, reflecting higher
accuracy for deep than shallow tests. There was also a main effect
of cue condition, F(1, 32) = 36.65, MSE = 0.06, p < .001,
indicating that participants significantly improved performance on
cued versus uncued trials (see Table 1). There was no main effect
of feedback, F(1, 32) = 0.32, MSE = 0.74, p = .57, suggesting
that feedback did not influence overall accuracy. The interaction
between feedback and cue condition was also not significant, F(1,
32) = 1.09, MSE = 0.06, p = .30, indicating that feedback did not
have an appreciable effect on cuing benefit. This result was unex-
pected, as we hypothesized that participants who received feed-
back may gain additional information about their performance,
resulting in more ideal criterion shifts and hence greater benefits
from external recommendations. None of the remaining two-way
interactions were significant, and the three-way interaction also
failed to reach significance.

Overall, these analyses demonstrate that participants increased
their accuracy on cued trials relative to uncued trials for both
deeply and shallowly encoded items, and this improvement in
performance was not altered by the provision of feedback. Thus,
although participants are effectively incorporating the cues into
their judgments, the mechanism by which this occurs does not
appear to require or benefit from feedback-based learning. We
further consider the inefficacy of feedback in the discussion.

Reactivity to cues. Because the accuracy analysis demon-
strates that observers are improving when cues are in the environ-
ment, it is clearly the case that these cues are being used to adjust
decision standards (see Table 3 for descriptive statistics). None-
theless, we wanted to verify that observers were shifting criteria
more vigorously during shallow tests than during deep tests, be-
cause this pattern should result if the cues are being considered in
light of the internal recognition evidence. That is, the cues should
have more influence when the internal evidence is less discrim-
inable (shallow tests) than when it is more discriminable (deep
tests). Using C as our criterion measure, we conducted a 2 X 2 X
2 mixed ANOVA with repeated measures of levels of processing
(deep vs. shallow) and cue type (Likely Old vs. Likely New) and a
between-subjects measure of feedback (present or absent). Results
revealed a main effect of levels of processing, F(1, 32) = 36.55,
MSE = 0.08, p < .001. However, we do not interpret this finding
directly because the interpretation of criterion differences across
conditions in which accuracy is also vastly different is highly
dependent on the particular measure of criterion employed (Pas-
tore et al., 2003). As anticipated, there was main effect of cue type,

F(1,32) = 70.47, MSE = 0.23, p < .001, suggesting that observ-
ers responded more liberally under Likely Old than Likely New
cues. The main effect of feedback was not significant, F(1, 32) =
36.55, MSE = 0.18, p = .80, indicating that feedback did not
influence overall criterion placement. Critically, a significant in-
teraction was found between levels of processing and cue type,
F(1, 32) = 21.34, MSE = 0.06, p < .001, demonstrating that the
difference in criterion across Likely Old and Likely New cue trials
was greater for shallow tests than deep tests. The remaining
two-way interactions were not significant, and the three-way in-
teraction among levels of processing, cue type, and feedback was
also not significant, F(1, 32) = 0.094, MSE = 0.06, p = .76. These
results suggest that participants’ absolute shifts in criteria are
greater under conditions where internal memory resolution is
lower,? which confirms that the cues’ influence is larger for the
condition with poorer internal recognition evidence. Furthermore,
the size of these criteria shifts are not feedback dependent, again
demonstrating that the use of cues does not seem to benefit from
feedback-based learning.

Individual differences in efficacy of cue use.  Although on
average accuracy benefited from cuing, there were large individual
differences in the degree of improvement. As noted in the intro-
duction, the effective use of external cues may critically depend
upon metacognitive monitoring. To examine the role of monitoring
we used the gamma index, which captures the correspondence
between changes in subjective confidence and changes in accuracy
at the trial-by-trial level for each participant (Nelson, 1984). Be-
cause gamma has a restricted range, we used the logit transforma-
tion of gamma (G*) to improve its scale properties (Benjamin &
Diaz, 2008).

If metacognition plays a role in cue utilization skill and is not a
simple alternative measure of uncued observer accuracy, hierar-
chical regression analysis should demonstrate that it makes a
significant and unique contribution to cued performance when
uncued performance has been appropriately partialed from the
data. Therefore, we examined if metacognitive awareness explains

2 Although comparing criteria under different levels of accuracy can be
problematic, we are interpreting the interaction only in terms of the
absolute difference in criteria between the two cuing conditions for deep
and shallow test items. In other words, we are interpreting only the absolute
shift between Likely Old and Likely New cues and are not making direct
comparisons about relative criterion locations across different accuracies.
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Table 2
Average Confidence for Uncued and Cued Conditions With Standard Deviations in Parentheses
Uncued Cued
Condition Hits Misses Correction rejections  False alarms Hits Misses Correction rejections  False alarms

Experiment 1

Shallow 82.7(9.7) 724(11.2) 75.2 (11.6) 72.8 (10.8)  80.6(8.9) 72.2(11.1) 774 (11.1) 71.6 (11.2)

Deep 94.5(5.0) 76.8(10.4) 82.9 (9.9 78.6(11.4)  93.8(5.6) 76.2(11.3) 84.2 (9.7) 75.4(11.6)
Experiment 2

65% predictive  85.2(9.5) 73.8 (10.9) 78.11 (11.0) 74.0 (10.6)  84.7(9.9) 72.9(9.7) 78.6 (10.5) 73.0 (10.4)

85% predictive 86.5(9.2) 74.2(10.4) 80.9 (10.5) 74.4 (10.0)

any unique variance in cued performance that is nonoverlapping
with uncued recognition skill. Using a hierarchical regression
analysis, we examined the contribution of metacognition to cued
accuracy (d') by entering feedback condition (dummy coded) and
uncued recognition accuracy as predictors in Step 1. Next, we
examined whether metacognitive monitoring made a contribution
beyond these factors by entering each participant’s G* as an
additional predictor in Step 2. Critically, G* was calculated from
uncued performance and is therefore a measure of metacognition
in the complete absence of cues. Table 4 shows simple correlations
and Table 5 shows the results of the two hierarchical regressions
that were separately conducted for the shallow and deep tests. For
the shallow test, in Step 1 uncued accuracy was a significant
predictor, B = 0.60, #30) = 5.02, p < .001, of cued accuracy, but
feedback group was not, B = —0.04, #(30) = —0.47, p = .64. It
is not surprising that participants with high accuracy in the uncued
condition would also have high accuracy under cuing. However,
the clear absence of any contribution of the feedback variable
serves again to underscore the fact that the provision of feedback
has no appreciable influence on the manner in which participants
use the cues in this paradigm (see ANOVA results above). Enter-
ing G* in Step 2 explained an additional 7.37% variance, F(1,
30) = 4.72, p = .04. When the hierarchical regression was re-
peated for the deep test list condition, a similar pattern emerged. In
Step 1, uncued accuracy was a significant predictor of cued accu-
racy, B = 0.77, 1(29) = 8.40, p < .001, and feedback group was
not, B = —0.16, 1(29) = —1.28, p = .21, and during Step, 2 G*
accounted for an additional 5.08% of unique variance in cued
performance, F(1, 29) = 6.00, p = .02.

The regression analyses demonstrate that cued performance is
linked with uncued accuracy but, more important, that after con-

Table 3
Criteria (C) and Accuracy (d') Under Likely Old and Likely
New Cues With Standard Deviation in Parentheses

Likely old Likely new
Condition C d' C d'

Experiment 1

Shallow —0.37(0.40) 0.83(0.47) 0.51(0.34) 0.83(0.50)

Deep —0.47(0.38) 1.96 (0.60) 0.01(0.35) 2.16(0.61)
Experiment 2

65% predictive  —0.27 (0.34) 1.14 (0.52) 0.27 (0.26) 1.26 (0.55)

85% predictive —0.42(0.43) 1.17(0.50) 0.41(0.09) 1.17(0.50)

trolling for uncued performance, metacognitive monitoring is a
significant predictor of cued performance gains. Again, the provi-
sion of feedback had little influence on the effective use of the
external cues. These results hold for both shallowly and deeply
encoded items. For two reasons, the failure of feedback to improve
cue utilization is unlikely simply the result of low power. First, the
null effect of feedback group replicated across both deep and
shallow tests. Second, the numerical direction of the effect is
opposite that predicted under the idea that feedback would im-
prove performance. That is, the beta weights in both regressions
were negative, indicating that cued performance was actually
slightly numerically worse for the feedback group (with other
factors controlled). This suggests that even large increases in
sample size would still fail to show an actual benefit for the
provision of feedback. In summary, Experiment 1 demonstrates
that participants are able to benefit from external cues for both
deep and shallow test items, individual differences in cue utiliza-
tion skills are in part related to metacognitive monitoring ability,
and feedback does not improve cue utilization skill.

Experiment 2

Method

For Experiment 2 we wanted to replicate our results from
Experiment 1 and examine whether participants are able to effec-
tively differentiate between cues of differing validity (65% and
85% predictive). We again also examined whether cued perfor-
mance is, in part, dependent on metacognitive monitoring.

Table 4
Simple Correlations (R) for Shallow and Deep Encoding

Variable Cued d' Uncued d’ Feedback G*

Shallow encoding

Cued d' —

Uncued d’ 69" —

Feedback —.17 —-.17 —

G* .68 70 —-.26 —
Deep encoding

Cued d' —

Uncued d’ 0.83"" —

Feedback —.10 .02 —

G* 58 42" —.28 —

*p < .05. **p< .00l
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Table 5
Hierarchical Regression Analysis Predicting Cued Accuracy (d')
for Shallow and Deep Encoding

Variable B SE B ¢ R*> AR?
Shallow encoding
Step 1
Uncued recognition (d") 0.60 0.12 677
Feedback -0.04 0.09 -—.06 AT
Step 2
Uncued recognition (d") 0.37 0.18 417
Feedback -0.01 0.12 -—.01

Metacognitive ability (G”) 095 043 39" S5 .07

Deep encoding

Step 1

Uncued recognition (d’) 0.77  0.09 .84

Feedback —-0.16 0.12 —.12 1
Step 2

Uncued recognition (d") 0.67 0.09 737

Feedback -0.06 0.10 -—.05

Metacognitive ability (G*) 0.69 0.28 26" 76" 05"
*p < 05 **p< .00l

Participants. Experiment 2 included 38 Washington Univer-

sity students (average age = 21.5 years, 18 female) who were paid
$20 for participation. Three participants were removed due to
near-chance performance (d' < 0.19), leaving 35 participants for
analyses. Once again, the exclusion of low performers does not
change our overall findings. All participants provided informed
consent in accordance with the university’s institutional review
board.

Materials and procedure. Testing was self-paced, with ob-
servers entering their responses via keyboard and presentation and
timing controlled via Matlab’s Psychophysics Toolbox (Version
3.0.8; Brainard, 1997; Pelli, 1997). For each participant, words
were randomly selected from a 1,216-item pool, with an average of
7.09 letters and 2.34 syllables and a Kucera—Francis frequency of
8.85.

We used a 3 X 2 mixed design with a repeated-measures factor
of cue condition (uncued, 65% predictive cue, 85% predictive cue)
and a between-subjects factor of feedback (present vs. absent).
Participants completed four study/test cycles (100 study items
each) during which the encoding task was syllable counting (1, 2,
3, or more syllables?). During each recognition test a total of 160
(80 old, 80 new) words were preceded by a probabilistic mne-
monic cue (Likely Old or Likely New) 1 s before the word probe
appeared. Cue predictability varied for this experiment, where half
the cues were 65% predictive (40 old, 40 new) and half the cues
were 85% predictive (40 old, 40 new). Participants were clearly
informed of the two different cue validities. The 65% predictive
cues were presented in a smaller blue font with the number 65
appearing next to the cue. The 85% predictive cues were presented
in a larger yellow font with the number 85 appearing next to the
cue. Instructions stated, “Cues that are 65% correct will give you
the correct answer about 6 out of 10 times. Cues that are 85%
correct will give you the correct answer about 8 out of 10 times.
Use the cues to help increase your performance.” In addition to the
cued trials, there were 40 (20 old, 20 new) uncued trials intermixed
in the test phase, with participants notified that some portion of the

probes would be presented without anticipatory cues. Following
each recognition decision participants rated confidence on a
6-point scale ranging from 50% (guessing) to 100% (certain) in
10% intervals. Corrective feedback followed for half the partici-
pants.

Results and Discussion

Does accuracy improve with provision of cues? To assess
gains in accuracy (d'), we used a 3 X 2 mixed ANOVA with a
repeated-measures factor of cue condition (uncued, 65% predictive
cue, 85% predictive cue) and a between-subjects factor of feed-
back (present or absent). Results revealed a significant main effect
of cue condition, F(2, 66) = 44.13, MSE = 0.05, p < .001; no
significant effect of feedback, F(1, 33) = 1.18, MSE = 0.45,p =
.28; and no significant interaction between cue condition and
feedback, F(2, 68) = 0.54, MSE = 0.05, p = .58. Follow-up post
hoc tests on the main effect of cue condition demonstrated that
relative to uncued trials, there was a significant increase in per-
formance on 85% predictive cued trials (MSE = 0.04, p < .001)
and a numeric though unreliable improvement on 65% predictive
cued trials (MSE = 0.05, p = .17; see Table 1). Overall, these
results demonstrate that participants can benefit from the use of
cues, even when two differing levels of cue validity are inter-
mixed. It is not necessarily surprising that performance does not
significantly improve with the 65% predictive cues, as these cues
are not highly accurate. However, replicating the results from
Experiment 1, we find that when cues are highly predictive,
participants are able to improve their performance. Furthermore,
we again see that cuing benefits do not increase with the provision
of corrective feedback.

Reactivity to cues. We wanted to examine if observers were
shifting criteria more vigorously during highly predictive cues
(85%), because this pattern should result if participants appropri-
ately consider the relative predictability of the two cue levels. That
is, as the 85% cues are accurate more often, we would expect
participants respond more vigorously to these more valid cues.
With criterion measure C as our dependent variable, we ran a 2 X
2 X 2 mixed ANOVA with repeated measures of cue type (Likely
Old vs. Likely New) and cue condition (65% predictive cue, 85%
predictive cue) and a between-subjects factor of feedback (absent
or present). Results revealed a main effect of cue type, F(1, 33) =
70.68, MSE = 0.23, p < .001, indicating that observers responded
more liberally under Likely Old than Likely New cues. The main
effects of cue condition, F(1, 33) = 0.01, MSE = 0.02, p = .92,
and feedback, F(1, 33) = 0.03, MSE = 0.18, p = .97, were not
significant. Importantly, there was a significant interaction be-
tween cue type and cue condition, F(1, 33) = 29.67, MSE = 0.02,
p < .001, showing a greater difference in criterion locations for
85% predictive cues than 65% predictive cues (see Table 3). As
before, the three-way interaction among cue type, cue condition,
and feedback was not significant, F(1, 33) = 0.007, MSE = 0.02,
p = .94. These results suggest that participants are in fact more
influenced by highly predictive cues than less predictive cues, and
this relationship is not affected by feedback.

Individual differences in efficacy of cue use.  Although
participants as a whole increased their cued performance relative
to uncued performance, there were once again large individual
differences in cuing benefits. We wanted to replicate results from
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Experiment 1 and demonstrate that metacognitive monitoring con-
tributes unique variance to cued performance above and beyond
uncued performance. To examine this, we ran a separate hierar-
chical regression analysis on 65% predictive cued performance
and 85% predictive cued performance, with uncued recognition
accuracy (d") and feedback as predictors in Step 1 and metacog-
nitive monitoring (G*) as a predictor in Step 2. Table 6 shows the
simple correlations and Table 7 shows the results for the two
separate hierarchical regression analyses conducted for 65% and
85% predictive cues. Because the two different cue validities were
intermixed with uncued trials, both analyses use the same measure
for uncued recognition and for metacognition (which is again
determined from uncued confidence reports). In Step 1 for 65%
predictive cued performance, uncued accuracy was a significant
predictor, B = 1.04, #(32) = 9.70, p < .001, and feedback was not,
B = —0.10, 1(32) = —1.16, p = .25. After controlling for uncued
performance and feedback, metacognitive ability explained an
additional 7.70% of the variance in cued performance, F(1, 31) =
14.02, p < .001. Similar results were found when using 85%
predictive cued performance, where again in Step 1 uncued per-
formance was a significant predictor, B = 0.59, #32) = 4.50, p <
.001, and feedback was not, B = —0.18, #(32) = —1.73, p = .09.
In Step 2, metacognitive ability explained an additional 7.74% of
the variance in cued performance, F(1, 31) = 4.90, p = .03.These
results demonstrate that although uncued recognition skill is re-
lated to cued performance, there is additional unique variance
explained by metacognitive monitoring. These results hold for
both 65% and 85% predictive cues and are not affected by feed-
back. Thus, replicating results from Experiment 1, we found that
metacognitive monitoring is a significant predictor in cued perfor-
mance above and beyond uncued accuracy, and corrective feed-
back does not seem to influence this relationship.

The current design also afforded the opportunity to ask a slightly
different question about the reliability of cue utilization skill across
observers. If this represents a moderately stable skill that varies
across individuals, one would expect that an individual who is
good at extracting useful information from cues that are 65% valid
would also be fairly good at doing so when cues are 85% valid.
Likewise, someone who is poor under one condition should be
poor under the other. We tested this idea in two ways, first using
the equal variance signal detection model and second using regres-
sion in a somewhat similar fashion to the analyses reported above.?
Under the signal detection model, given a baseline d' reflecting the

Table 6
Simple Correlations (R) for 65% and 85% Predictive Cues
Variable Cued d' Uncued d' Feedback G*

65% predictive cues

Cued d' —

Uncued d’ 86" —

Feedback —.17 —.07 —

G* 627 42 —.10 —
85% predictive cues

Cued d' —

Uncued d’ 627 —

Feedback —.28 —.07 —

G* 527 42 —.10 —
p<.05 Tp<.0l "p<.001.

Table 7
Hierarchical Regression Analysis Predicting Cued Accuracy (d')
for 65% Predictive Cues and 85% Predictive Cues

Variable B SE B B R? AR?
65% predictive cues
Step 1
Uncued recognition (d") 1.04 0.12 .85
Feedback -0.10 0.08 —.10 50
Step 2
Uncued recognition (d’) 0.88 0.08 737
Feedback -0.07 007 -—.08
Metacognitive ability (G”) 0.79 0.21 ) N N 7 A
85% predictive cues
Step 1
Uncued recognition (d’) 0.59 0.13 60"
Feedback -0.18 010 —.23 437
Step 2
Uncued recognition (d") 046 0.14 A7
Feedback -0.16 0.13 —.21
Metacognitive ability (G*) 0.64 0.29 31 517 08"

*p< .05 *p<.0l. *p<.00l

observer’s skill in the absence of external cues and an external cue
with a fixed validity (e.g., 75%), one can work out the expected
measured d' if the observer ideally integrates the cues and internal
evidence. For example, consider an observer with a baseline d’ of
1.0 and an external cue that is 75% valid. Under the signal
detection model, the observer should shift the criterion to a loca-
tion on the evidence axis representing a likelihood ratio of 3 to 1
whenever the cue indicates Likely New and of 1 to 3 whenever the
cue indicates Likely Old (Macmillan & Creelman, 2005). If
the baseline d’ value is 1.0, ideal criterion placement in response
to the cue will yield a d’ value of 1.52, which is the maximum
possible accuracy achievable when combining the cue and the
evidence under the signal detection model. Figure 3 shows the
relationship between baseline d’ and the maximum possible d’
under cuing for the two cue validities used in Experiment 2 across
a range of baseline d’ values. Returning to the question of indi-
vidual differences in cue-use skills, one can use these ideal values
as benchmarks by taking the maximum d’ possible under the two
cue validities (given that participant’s baseline d') and dividing
each of these ideal values by the d’ scores that participant actually
achieved under the two cuing conditions. A participant who is near
ideal in one instance should be near ideal in the other if he or she
possesses a stable cue integration skill. When we conducted this
analysis on the current data, the two proportional scores were
highly correlated (r = .70, p < .001) suggesting a stable skill
across the cuing conditions.

The above analysis is wholly contained within the signal detec-
tion measurement model. It does not require calculating gamma
and so avoids some of the criticisms of that particular statistic.
However, given that the equal variance model is generally as-
sumed to be only a rough approximation of recognition decision
making (e.g., Wixted & Mickes, 2010; Yonelinas, 2002), it is
useful to consider cue utilization reliability using a different ap-

3 We thank an anonymous reviewer for suggesting this analysis.
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Figure 3. Maximum d' under 65% and 85% predictive cues with optimal
criterion shifts. The x-axis represents uncued or baseline d" and the y-axis
represents the maximum cued d’' possible under 65% predictive cues
(squares) and 85% predictive cues (triangles) under an equal variance
signal detection model. A color version of this figure is available online as
supplemental material (http://dx.doi.org/10.1037/a0029469.supp).

proach in order to make sure the conclusions are not model
specific. To do so we returned to multiple regression. If an ob-
server has a stable cue utilization skill, there should be a relation-
ship between cued performance under the 65% validity condition
and the 85% validity condition that is statistically independent of
the baseline performance of the observer. That is, there should be
some process that allows an observer to more or less effectively
incorporate cues that is not wholly determined by whether or not
the observer is simply more or less accurate in the absence of
external cues. To assess this, we simply took each participant’s
baseline d' and his or her effective d' under the 85% valid cue
condition and used these to predict performance under the 65%
valid cue condition. The results of this hierarchical regression are
shown in Table 8. Critically, after controlling for uncued recogni-
tion in Step 1, cued accuracy under 85% valid cues is a significant
predictor and explains an additional 10.1% of the variance, F(1,
32) = 204, p < .001, in cued accuracy under 65% valid cues.
Supporting the signal detection analysis above and the gamma
statistic findings, performance in the 85% cue validity condition is
predictive of performance in the 65% cue validity condition even
when baseline accuracy has been partialed out. In other words,
there is a characteristic of observers, apart from baseline recogni-
tion ability, that results in a stable relationship across cuing con-
ditions.

Overall, the data converge with those of Experiment 1 in sug-
gesting that the ability to effectively use external cues is partially
dependent upon metacognitive monitoring skill demonstrated in
the absence of external cues during baseline recognition. Experi-
ment 2 replicated this basic finding across cues of widely differing
validity (65% and 85%), and it provided three demonstrations that
converge in suggesting that this reflects a stable skill, at least
across intermixed cuing conditions within a single experiment.
First, in the analyses using baseline accuracy and gamma to predict
cued performance (see Table 7), gamma resulted in a highly
similar increase in variance accounted for across the two cuing

conditions (and similar regression coefficients). Thus, its explan-
atory power was stable across the two cuing conditions, which
suggests it was tracking a stable characteristic of the observers.
Additionally, the gamma statistic is calculated entirely from un-
cued, baseline recognition performance and thus forms an index of
metacognitive monitoring that is statistically independent of actual
cued performance. Second, the signal detection analysis that com-
puted the proportion of optimal d’ achieved under the two cuing
conditions revealed a highly significant correlation in these values
across the two cuing conditions. Finally, the regression analysis
that used baseline and 85% valid cued performance to predict 65%
valid cued performance revealed a stable relationship between
cued performance under the two different cue validities even when
baseline accuracy was statistically controlled. Thus, the three ap-
proaches for estimating reliability of metacognitive monitoring
skill all converged on the same result. This suggests that the ability
to use external cues to elevate performance during recognition is a
skill that varies across individuals and that similarly contributes to
performance under different cue validities.

General Discussion

Our study examined the ability of observers to integrate reliable
external recommendations into recognition judgments. Before dis-
cussing our main results, we want to make note of another litera-
ture, referred to as memory conformity, which also examines how
observers are influenced by external sources of information. Mem-
ory conformity studies generally have a confederate intentionally
provide misinformation on a subset of trials, while the participant
is led to believe that he or she studied the same material as the
confederate. The overall finding from this memory conformity
research is that people’s decisions are in fact influenced by others’
responses (Allan & Gabbert, 2008; Axmacher, Gossen, Elger, &
Fell, 2010; Betz & Skowronski, 1996; Meade & Roediger, 2002;
Reysen, 2005; Roediger, Meade, & Bergman, 2001; Schneider &
Watkins, 1996; Walther et al., 2002; Wright, Gabbert, Memon, &
London, 2008; Wright, Mathews, & Skagerberg, 2005; Wright,
Self, & Justice, 2000). These prior studies focus on the negative
aspect of conformity, mainly that performance is decreased when
participants are given inaccurate external information. Implica-
tions from memory conformity research are especially important
when the goal is to minimize external influences, such as eyewit-
ness testimony situations where the goal of the legal system is to
preserve the original fidelity of the observer’s remembrances (not
to maximize discrimination accuracy). However, most recognition
decisions are not made in the context of the legal system or in the

Table 8
Hierarchical Regression Analysis Predicting 65% Cued
Accuracy (d')

Variable B SEB B R? AR?
Step 1
Uncued recognition (d") 1.04 0.11 0.86™" 0.74™
Step 2

Uncued recognition (d") 0.74 0.11
85% cued recognition (d') 0.50 0.11

0.61""

0.40 0.84™* 0.10"

= <001,
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context of deceptive others. Generally, one’s goal is to maximize
accuracy, and, in the presence of useful sources of external infor-
mation, this goal is achieved by judiciously integrating external
influences with internal memory evidence. Thus, our study spe-
cifically examined how observers are able to benefit from explic-
itly reliable external cues and found that participants are in fact
able to boost performance under such conditions.

In particular, we were interested in determining whether meta-
cognitive monitoring plays a role in observers’ ability to capitalize
on external cues. We hypothesized that the ability to assess the
quality of one’s own internal memory evidence will influence
one’s ability to properly weight external memory cues. As de-
scribed in the introduction, under SDT, in order to successfully
capitalize on external cues with a known validity, observers must
adaptively shift their decision criteria under the different cuing
conditions. An observer with more accurate insight about his or her
internal memory representation (i.e., reliable approximations of a
likelihood ratio evidence variable) can more appropriately deter-
mine ideal criteria placement and hence benefit more from external
cues. Under this perspective, criterion shifts are not a nuisance
phenomenon but are reflective of an adaptive decision process that
capitalizes on environmental context cues during recognition judg-
ment. Additionally, despite growing research examining recogni-
tion memory, prior research in the field has surprisingly not yet
investigated the role of metacognitive monitoring in the adaptive
placement of recognition criteria.

In the current report, across varying encoding conditions and
cue validities, we demonstrated that, after controlling for uncued
recognition skill, observers with greater metacognitive monitoring
do in fact benefit more from reliable external cues. Thus, our
results suggest that at least one factor governing successful adap-
tive criterion placement is metacognitive monitoring ability. Al-
though metacognitive monitoring and uncued recognition accuracy
have shared variance, our hierarchical regression analyses demon-
strate that metacognitive monitoring has a unique contribution to
cued performance beyond that of basic recognition skill. Although
metacognitive monitoring is in part related to the benefit achieved
from cues, future work should assess how other general abilities,
such as working memory capacity, inhibitory control, or intelli-
gence, may influence cuing benefit and the relationship of these
abilities to metacognitive monitoring skills. Future work examin-
ing adaptive criterion shifting may also benefit from jointly as-
sessing individual differences in metacognition along with other
variables that may influence criteria placement such as personality
variables (e.g., agreeableness or conscientiousness) and develop-
ment. For example, given prior aging research suggesting behav-
ioral inhibition deficits in healthy older adults (Hasher & Zacks,
1988), it may be the case that older adults overrely on external
recommendations because they are unable to use recovered mem-
ory evidence to countermand the expectations instilled by the
recommendations. One related example by Rogers, Jacoby, and
Sommers (2012) examined the use of auditory context cues, where
older adults exhibited more false hearing than younger adults did
due to a greater reliance on auditory context cues. In their study
Rogers et al. created congruent and incongruent contexts using a
cue—target training procedure. During the test phase, participants
were presented with previously learned semantically related word
pairs (e.g., BARN-HAY), where the cue word was clearly aurally
presented and the target word was masked in noise. For congruent

trials the target word was the same as the trained target (e.g., HAY),
and for incongruent trials the target word was phonologically
similar (e.g., PAY). Despite a warning that the targets would not
always match previously learned targets and titration for age-
related hearing differences, older adults were more likely to false
alarm and favor the previously learned context (e.g., HAY) than
younger adults were. However, when the prior context and current
target matched, older adults outperformed younger adults. Thus, it
appears that at least for the cause of auditory cues, older adults
tend to more heavily rely on prior external context. This resulted
in greater accuracy when the context was facilitative but produced
greater false hearing when the context was incongruent.

In addition to assessing metacognitive monitoring, we examined
whether corrective feedback influenced observers’ ability to ben-
efit from external recommendations. Somewhat surprisingly, cor-
rective feedback did not improve the extent to which participants
benefited from external cuing, nor did it influence the degree to
which metacognitive monitoring predicted cued performance.
These results may seem puzzling because feedback could poten-
tially inform participants about the adequacy of their criterion
placement strategies and hence help them respond more ideally.
Prior studies have demonstrated that feedback is sometimes critical
for observers to realize that a shift of the criterion may be appro-
priate or useful (Estes & Maddox, 1995; Kantner & Lindsay, 2010;
Rhodes & Jacoby, 2007; Verde & Rotello, 2007). The key differ-
ence between prior work using feedback and the current study is
that in the former, feedback was typically used to alert the partic-
ipant to some experimental manipulation that should ideally in-
duce a criterion shift. For example, in Rhodes and Jacoby (2007)
the probability of encountering studied items was correlated with
screen locations such that words presented on one side were more
likely to be targets and should result in more liberal responding
than words presented on the other side of the screen. In Verde and
Rotello (2007), the strength of old items (manipulated via repeti-
tion) was considerably higher on the first than the second half of
the recognition test, and thus the optimal criterion placement was
different in the two halves of the test. The key commonality across
these studies is that feedback appeared critical for the participants
to realize that responding similarly to the two locations (Rhodes &
Jacoby, 2007) or similarly in the two test halves (Verde & Rotello,
2007) was not ideal, because the overall distributions of targets or
the average target strength differed across locations or test periods.
In the current study, however, the question was not whether
observers would realize that the external cues were potentially
useful, as this information was already clearly provided. Instead,
the key question was whether the feedback would increase the
ability of the observers to optimally integrate the cues into their
judgments. In this context, feedback could help participants tune
the size of criterion shifts in order to increase the odds of correct
responding. Alternatively, the feedback on baseline, uncued trials
might be used to calibrate the metacognitive judgments, which in
turn would improve the use of cues because it would reflect an
improvement in the observers’ understanding of the link between
internal evidence and the likelihood of successful judgments. In-
deed, a recent model by Turner et al. (2011) specifically assumed
that correct feedback plays a critical role in improving the observ-
er’s estimates of internal evidence distributions; thus, it should
result both in an improvement in gamma during uncued trials and
in an increased ability to incorporate external cues, given the
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improved knowledge of the relationship between strength and
likelihood of success. Unfortunately, neither possibility was sup-
ported by the current data, because the feedback group did not
demonstrate increased cued recognition performance and had nu-
merically lowered metacognitive monitoring scores on uncued
trials relative to the no feedback group. In Experiment 1, in the
feedback group, the average G* was 0.25 for shallow test items
and 0.49 for deep test items; in the no feedback group, G* was 0.33
for shallow test items and 0.62 for deep test items. In Experiment
2, the average G* was 0.76 in the feedback group and 0.79 in the
no feedback group.

This lack of improvement from feedback perhaps suggests lim-
its on the plasticity of metacognitive monitoring ability during
recognition. Prior research in the field of metacognition in an
educational setting has in fact indicated that metacognitive abilities
are often resistant to change (e.g., Bol, Hacker, O’Shea, & Allen,
2005; Koriat, 1997; Nietfeld, Cao, & Osborne, 2005), although the
results are somewhat mixed, with some studies finding successful
interventions (for a review, see Hacker, Bol, & Keener, 2008).
However, improvements in the ability to monitor learning or
mastery of complex materials may not transfer very well to basic
judgments of recognition confidence. It is also the case that ex-
perimental manipulations of feedback may play a fairly minor role
in judgments, such as recognition, with which observers have had
a lifetime of experience (for a discussion, see Turner et al., 2011).
However, given that metacognitive awareness and cue utilization
skills are clearly far from perfect in the current participants (al-
though quite good in some participants), this would have to be
viewed as a premature cessation of the learning process.

Finally, the individual differences we found in the ability of
observers to capitalize on external recommendations also have
implications for signal detection models that assume a likelihood
ratio decision axis. To date, there has been little consideration of
the significance of the metacognitive literature for this particular
class of decision models. However, this literature and the current
findings suggest that there are likely important constraints on the
ability of observers to assess the kind of information assumed
under the likelihood ratio SDT model. Thus, even if one assumes
that observers may be performing something roughly analogous to
a likelihood ratio decision process (cf. Hintzman, 1994), they may
do so in only a very limited or heuristic sense. One limitation
revealed in the current study is poor metacognitive monitoring, and
an interesting follow-up question to the current work would be to
examine whether this metacognitive limitation is domain specific
or fairly general. The latter would reveal that individuals who
experienced difficulty incorporating external cues during recogni-
tion judgment would also have difficulty incorporating analogous
cues during, say, perceptual judgments (e.g., gender discrimina-
tions), and in both cases this would be in part mediated by
generally poor metacognitive monitoring of internal evidence dur-
ing uncued performance.
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